etg-VDE-Studie_energiespeicher-bild
VDE
01.06.2012 Fachinformation

Energiespeicher für die Energiewende

Speicherungsbedarf und Auswirkungen auf das Übertragungsnetz für Szenarien bis 2050

In einer Studie wurde die notwendige Speicherkapazität von Kurz- und Langzeitspeichern zur Integration erneuerbarer Energien betrachtet. Untersucht wurde auch der Einfluss der Energiespeicher auf den notwendigen Ausbau des Übertragungsnetzes und der Speicherstandorte.

Eine bereits in 2009 erstellte VDE Studie enthält ausführliche Beschreibungen der unterschiedlichen Speichertechnologien.

Kontakt
ETG Geschäftsstelle

VDE-Studie: Energiespeicher für die Energiewende - kurzfristig noch nicht von so hoher Bedeutung

  • Schwankungen der Einspeisung erneuerbarer Energien können kurz- bis mittelfristig durch thermische Kraftwerke und geringfügige Abregelung der Erneuerbaren flexibel und wirtschaftlich ausgeglichen werden
  • VDE empfiehlt intensivere Forschung und Entwicklung von Energiespeichern und Schaffung wirtschaftlicher Rahmenbedingungen für die Zukunftssicherung des Stromversorgungssystems
  • Speichereinsatz ändert nichts an Dringlichkeit des Übertragungsnetzausbaus

Der Speicherbedarf in der Energiewende wird erst ab Anteilen erneuerbarer Energien (EE) von über 40 Prozent signifikant. Die durch den EE-Ausbau hervorgerufenen Schwankungen können kurz- und mittelfristig größtenteils von einem flexiblen thermischen Kraftwerkspark, den bereits vorhandenen Speicherkapazitäten sowie geringfügige Abregelung der EE abgefangen werden. Auch auf den erforderlichen Übertragungsnetzausbau hat der Einsatz von Speichern kaum Auswirkungen. Bei einem Szenario mit einem EE-Anteil von 40 Prozent dient der Speichereinsatz vor allem der Optimierung und Verstetigung fossiler Stromerzeugung. Auf die Gesamtemissionen der Stromerzeugung wirkt sich der Speichereinsatz ebenfalls erst langfristig positiv aus – bei einem Szenario mit einem hohen EE-Anteil von über 40 Prozent. Das sind wichtige Ergebnisse der VDE-Studie „Energiespeicher für die Energiewende“, die den Speicherungsbedarf und Auswirkungen auf das Übertragungsnetz für Szenarien bis 2050 untersucht. Auf Basis der Analysen kommt die VDE-Studie zu dem Schluss, dass heute der Stromnetzausbau und die Flexibilisierung des Kraftwerksparks sowie der regelbaren EE-Anlagen (z.B. Biomasse) prioritär vorangetrieben werden sollten. Langfristig werden Speicher allerdings ein elementarer Bestandteil des Stromversorgungssystems. Daher eröffnet sich auch auf diesem Feld ein dringender F&E-Bedarf. Damit die notwendigen Speichertechnologien zukünftig wirtschaftlich und großtechnisch verfügbar werden, empfiehlt die VDE-Studie technologieneutrale Forschungsanstrengungen und Pilotprojekte zu Speichertechnologien. Handlungsbedarf gibt es auch im regulativen Umfeld sowie im Strommarktdesign, insbesondere im Hinblick auf die Erweiterung um eine Leistungs- und Flexibilitätskomponente zur Finanzierung der technisch notwendigen Versorgungssicherheit und Systembilanzierung über Kraftwerke und Speicher.

Speicher über F&E für den Markt vorbereiten

Auch wenn Speicher aktuell nur wenig dazu beitragen können, die Herausforderungen der Energiewende zu meistern, müssen sie verstärkt in den Fokus der Forschung und Entwicklung rücken. Denn langfristig werden Speicher bei einem hohen EE-Anteil – wie in dem 80-Prozent-Szenario berechnet – ein unverzichtbares Element des Stromsystems darstellen. Um Speichertechnologien für den langfristig erforderlichen wirtschaftlichen und großtechnischen Einsatz weiterzuentwickeln, sollten daher laut VDE schon heute intensive technologieneutrale Forschungs- und Entwicklungsprojekte auf den Weg gebracht werden und geeignete wirtschaftliche Rahmenbedingungen geschaffen werden.

VDE-Studie Energiespeicher im Stromversorgungssystem mit hohem Anteil erneuerbarer Energieträger

VDE

Die Bundesregierung plant einen massiven Ausbau erneuerbarer Energien bis zu 40 Prozent Anteil an der Stromversorgung im Jahr 2020. Die vorhandene Infrastruktur ist allerdings nicht für große Mengen unregelmäßig eingespeiste Energie ausgelegt. Auch die Verbraucher sind nicht darauf vorbereitet, die dann in Spitzenzeiten verfügbare Erzeugungsleistung abzunehmen. Deshalb ist eine ausreichende Speicherkapazität notwendig. Andernfalls muss die Stromerzeugung aus erneuerbaren Energien zeitweise gedrosselt werden, um die Stabilität der Netze zu gewährleisten. Nach einer aktuellen VDE-Studie bieten große stationäre Wasserstoffspeicher ein großes Potenzial für die Aufnahme von Stromüberschüssen bei hohem Angebot elektrischer Energie aus erneuerbaren Quellen. Dieser Wasserstoff könnte dann entweder bei Bedarf wieder rückverstromt oder aber in Hybrid-Elektrofahrzeugen für mehr Reichweite eingesetzt werden. E-Autos könnten bei einem Großteil der jährlich mehr als 60 Milliarden Autofahrten in Deutschland Benziner und Diesel ersetzen und damit Bestandteil des Stromnetzes werden. Damit würden Energienetz und Verkehrssektor zusammenwachsen, Wind- und regenerative Energien effizient genutzt und der CO2-Ausstoß verringert werden, so die Prognose der VDE-Studie „Energiespeicher in Stromversorgungssystemen: Trends, Perspektiven, Chancen". In ihr zeigt der VDE, wie Speicher zur Integration erneuerbarer Energien beitragen können, welche Entwicklungs-potenziale diese Technologie für den Standort Deutschland bietet und wie viel Speicherung kostet.

Schlüsseltechnologie für Elektrofahrzeuge

Der Reiz einer umweltfreundlichen und importunabhängigen Energieversorgung wird zu einem Umdenken im Verkehrssektor führen. Der VDE prognostiziert, dass Elektrofahrzeuge das traditionelle Auto sukzessive ablösen werden. Als schnell umsetzbare Lösung bieten sich laut Studie so genannte Plug-in-Hybridfahrzeuge an, die zum Laden der Batterie ans Netz angeschlossen werden können und zusätzlich noch einen herkömmlichen Verbrennungsmotor haben. Dies ist für eine schnelle Markteinführung von Plug-in-Hybridfahrzeugen von großem Vorteil. Aufgrund hoher Energiedichte und Effizienz favorisieren die VDE-Experten hierbei die Lithium-Ionen-Batterie. Steigt der Anteil von Fahrzeugen mit Elektroantrieb, nimmt auch der Bedarf an mobilen Energiespeichern zu. Um den Verbrauch fossiler Energieträger weiter zu reduzieren, wird langfristig das "Brennstoffzellen-Hybridfahrzeug", also die Kombination von Batterie und Wasserstoff, genutzt in Brennstoffzellen, favorisiert. Der Einsatz von Batterien hat gegenüber Wasserstoff den großen Vorteil, dass der aus erneuerbaren Energien gewonnene Strom etwa um den Faktor 2 bis 3 besser genutzt wird. So könnte im Stadtverkehr sehr effizient mit der Batterie - auftankbar an jeder Steckdose - gefahren und damit bereits der größte Teil der täglich gefahrenen Kilometer abgedeckt werden. Zusätzlich würde Wasserstoff in Kombination mit Brennstoffzellen für die Langstrecke das Handicap der relativ geringen Reichweite von reinen Batteriefahrzeugen auch umweltfreundlich lösen. Speichersysteme im Verkehr eröffnen damit attraktive Potenziale zur Entkopplung von Stromerzeugung und -bedarf. Damit ergeben sich auch Synergien für das Netz.

Markteinführung erfordert Infrastruktur

Noch scheitert die flächendeckende Einführung des Brennstoffzellenhybridfahrzeugs an der fehlenden Infrastruktur für die Betankung mit Wasserstoff. Ein Übergang zu Wasserstoff erfordert eine konzertierte Aktion von Energie- und Kraftstoffversorgern sowie der Fahrzeugindustrie. Um einen Kaufanreiz für die Bürger zu schaffen, muss die flächendeckende Versorgung mit Wasserstoff als Kraftstoff gewährleistet sein. Das hohe Risiko der Anfangsinvestitionen - insbesondere für die Tankstellen - muss dabei durch die öffentliche Hand abgesichert werden. Die VDE-Studie geht davon aus, dass Synergien mit den großen stationären Wasserstoffspeichern die Markteinführung beschleunigen werden.

Deutschland in FuE bei Speichertechnologien unzureichend aufgestellt

Die notwendigen Speichertechnologien für die vielfältigen Aufgaben bei einer Stromversorgung mit hohem Anteil erneuerbarer Energien sind grundsätzlich verfügbar. Für die Entwicklung bis zur Marktreife muss allerdings noch viel getan werden. So muss schnellstmöglich in Forschung und Entwicklung (FuE) von Speichersystemen sowie in den Ausbau der industriellen Basis investiert werden. Im internationalen Vergleich sind Deutschland und Europa aber sowohl in Forschung und Entwicklung als auch bei der Industrieproduktion von Speichersystemen unzureichend aufgestellt. Nordamerika, Japan und Australien weisen deutlich weiterentwickelte Strukturen auf.

Die neuen Speichertechnologien müssen nach Ansicht des VDE weitaus mehr gefördert werden als jetzt. Ohne Anschubförderung werden sie den Sprung in den Markt nicht oder nicht schnell genug schaffen. Damit besteht die Gefahr, dass der Ausbau der erneuerbaren Energien auf halber Strecke stecken bleibt, die ehrgeizigen Ziele der Bundesregierung damit nicht umgesetzt werden können und dass Deutschland den Anschluss im internationalen Wettbewerb verliert. Der VDE schlägt neben direkter Forschungsförderung für die Anwendung von Speichertechnik Anreizprogramme nach dem Vorbild des Erneuerbare-Energien-Gesetzes (EEG) vor.

Kosten lassen sich drastisch senken

Die Speicherung elektrischer Energie ist mit signifikanten Kosten verbunden. Am kosten-günstigsten sind derzeit Pumpspeicherkraftwerke für die stundenweise Speicherung mit günstigstenfalls 3 Cent pro Kilowattstunde (kWh). Für andere, heute noch sehr teure Speicher sieht der VDE große Kostensenkungspotenziale durch Massenproduktion und technischen Fortschritt. So könnten sich die Vollkosten für die „Wochenspeicherung" von Wasserstoff von derzeit etwa 24 Cent/kWh in zehn Jahren mehr als halbieren. Bei Lithium-Ionen-Batterien und bei Bleibatterien für die tägliche Nutzung in dezentralen Versorgungskonzepten könnten sich die Kosten von 50 auf etwa 15 Cent/kWh beziehungsweise von 18 auf unter 10 Cent/kWh reduzieren.

Zentrale Großspeicher (Pumpspeicher, Druckluft, Wasserstoff) sind investitionsintensive Technologien mit Abschreibungszeiträumen im Bereich von 30 und mehr Jahren. Das betriebswirtschaftliche Risiko ist groß, weil Bedarf und Konkurrenztechnologien schwer abzuschätzen sind. Investoren dürften sich daher nach Einschätzung des VDE zurückhalten. Elektrochemische Speicher (Batterien) haben Abschreibungszeiträume von zehn bis 20 Jahren, lassen sich schnell und flexibel errichten und sind daher eine mögliche Lösung für den in den kommenden Jahren auftretenden Speicherbedarf. Es gibt mehrere Batterietechnologien, die das Potenzial haben, am Markt erfolgreich zu werden.

Komplexe Anforderungen, vielfältige Lösungen

Die Experten der Energietechnischen Gesellschaft im VDE analysieren die technischen und wirtschaftlichen Potenziale einer ganzen Reihe wichtiger Speichertechnologien. Je nachdem, welche Anforderungen an die Speicher gestellt werden, zum Beispiel wie viel Energie wie lange gespeichert werden muss, wie schnell sie wieder für wie lange abgegeben werden kann oder wie häufig Energie aus dem Speicher abgerufen wird, muss die geeignete Technologie gewählt werden. Eine Universaltechnologie gibt es nicht. Die VDE-Studie untersucht unter anderem Großspeicher zur Integration in das Übertragungsnetz sowie Batteriesysteme, die sich aufgrund ihres modularen Aufbaus insbesondere für Anwendungen in Verteilungsnetzen qualifizieren. Kleinere Batteriespeicher können bei Bedarf auch zu einem Großspeicher - real oder virtuell - gebündelt werden und Aufgaben im Übertragungsnetz übernehmen.

Wasserstoff für Offshore-Wind

In Langzeit-Großspeichern, die erneuerbare Energie zum Ausgleich von Großwetterlagen und saisonalen Schwankungen für mehrere Wochen vorhalten können und weniger als einmal pro Woche entladen werden, sind immense Energiemengen zu speichern. So reicht die gesamte in Deutschland installierte Pumpspeicherkapazität bei weitem nicht aus, um allein in der Vattenfall-Regelzone die auftretenden Windflauten auszugleichen. Bereits hierfür wäre mindestens die 20-fache Speicherkapazität erforderlich. Daher kommen laut Studie nur Wasserstoffspeicher oder der Umbau von heutigen großen Stauseen in alpinen Regionen zu Pumpspeicheranlagen in Frage. Im ersten Fall wird Wasserstoff in großen Elektrolyseuren erzeugt und unter Druck in unterirdischen Salzkavernen gespeichert. Aufgrund der relativ hohen Energiedichte lässt sich aus Kavernen mit Wasserstoff gegenüber Druckluftkavernen etwa 60 Mal so viel elektrische Energie entnehmen. Nur derartige Langzeitspeicher haben das Potenzial, thermische Kraftwerke für die Reservehaltung zu ersetzen. Für Wasserstoffspeicher liegen insbesondere in den küstennahen Regionen relativ gute Bedingungen vor. Hier könnten sie für die Aufnahme von Energie aus Offshore-Windparks eingesetzt werden. Langfristig könnten auch die in Norddeutschland vorhandenen Erdgasspeicher zu Wasser-stoffspeichern umgebaut werden. Als Großspeicher mit einem täglichen Entladezyklus zum Ausgleich zwischen Schwach- und Hochlastzeiten empfehlen sich Druckluftspeicher (adiabatisch1). Sie sind bei täglicher Nutzung ähnlich kostengünstig wie Pumpspeicherkraftwerke. Der Eingriff in die Landschaft ist aber wesentlich geringer, da die Druckluft hierzu in großen unterirdischen Salzkavernen gespeichert wird.

Mit günstigen Alternativen mixen

Speicher sind nicht immer die beste Lösung, nicht zuletzt aufgrund der hohen Speicherkosten. Zu den wirtschaftlich interessanten Alternativen gehören der Ausbau des Netzes, die Optimierung des Last- und Erzeugungsmanagements, die Nutzung von thermischen Speichern und die gezielte Mitnutzung von Speichern in Anwendungen, die ohnehin Speicher benötigen, wie Elektrofahrzeuge. Im Sinne einer umweltfreundlichen und volkswirtschaftlich tragbaren Lösung für das Gesamtenergiesystem ist - auf europäischer Ebene - ein optimaler Mix anzustreben, so die Forderung des VDE.

Batteriespeicher in der Nieder- und Mittelspannungsebene - Potenziale für Strom im Wärmemarkt

ETG-Batteriespeicher-Infocenter
VDE

Dezentrale Stromspeicher plus „Power-to-Heat“ können erneuerbare Energien puffern; „grüne“ Elektrizität als effizienter Wärmeproduzent reduziert Treibhausgas

Die wachsende Leistung aus fluktuierenden Quellen wie Wind- und Solarenergie stellt die Stromnetze vor große Herausforderungen. Denn es wird immer dann zu erheblicher Netzinstabilität kommen, sobald sich die Lücke zwischen Energieproduktion und -verbrauch zu stark öffnet. Zwei Systeme, die dies bei einer intelligenten Kombination verhindern können, sind dezentrale Stromspeicher und elektrische Wärmeerzeuger. Bei geeigneter Steuerung sorgen sie für Entlastung der Stromnetze und puffern als Abnehmer oder Lieferant Energie. Zudem bietet „Power-to-Heat“, d. h. die direkte, lokale Stromerzeugung und dessen Umwandlung in Wärme plus Wärmespeicherung, im Fall von Wärmepumpen eine sehr effiziente und im Fall von bivalenten Elektrodenkesseln und Heizstäben eine sehr kostengünstige Option im Wärmemarkt, um fossile durch erneuerbare Energie zu ersetzen und Treibhausgas-Emissionen zu reduzieren. Das sind zentrale Ergebnisse der neuen VDE-Studien „Batteriespeicher in der Nieder- und Mittelspannungsebene“ und „Potenziale für Strom im Wärmemarkt bis 2050“, die der Verband heute in Berlin vorstellte.

Wie die VDE-Studien zeigen, sind beide Systeme sehr schnell regelbar und können damit Netz- und Systemdienstleistungen bereitstellen. Allerdings sind diese Anwendungen heute noch nicht wirtschaftlich, weil derzeit nur die Nutzung von Eigenstrom begünstigt ist. Damit gesamtwirtschaftlich sinnvolle Maßnahmen auch betriebswirtschaftlich umgesetzt werden können, müssen laut den VDE-Experten geeignete rechtliche und regulatorische Rahmenbedingungen einschließlich der hierfür erforderlichen Tarife und Tarifstrukturen geschaffen werden. Zudem muss das Zusammenwirken beider Systeme optimiert werden. Um beide Systeme in das Gesamtsystem (Smart Energy System) einzubinden, sollten insbesondere kleinere dezentrale Systeme zusammengeschlossen werden. Hierfür müssen angepasste Informations- und Steuerungskonzepte geschaffen werden, wie es beginnend bei von manchen Energieversorgern systemisch zusammengefassten kleinen Blockheizkraftwerken mit Kraft-Wärmekoppelung bereits geschieht. Ferner gilt es, einzelne Technologien weiterzuentwickeln, um die Potenziale der beiden Systeme für die Energiewende voll auszuschöpfen, so die VDE-Studie.

Batteriespeicher für erneuerbare Energien besonders gut geeignet

Die VDE-Experten empfehlen vor allem den Einsatz flexibler Batteriespeicher in der Mittel- und Niederspannungsebene. Diese Speicher sind - in großer Zahl eingesetzt - technisch besonders gut geeignet, um die Auswirkungen der schwankenden Einspeisungen aus Solar und Windkraft im Kurzzeitbereich (bis zu einigen Stunden) zu beherrschen. Dabei können die Batteriespeicher prinzipiell Netz- und Systemdienstleistungen in allen Bereichen erbringen und somit auch in gewissem Umfang Aufgaben konventioneller Kraftwerke übernehmen. Für den Kurzzeitbereich bieten sich insbesondere Lithium-Ionen- und Blei-Säure-Technologien an. Bei größeren Speicher-Systemen können Hochtemperaturbatterien und Redox-Flow-Batterien je nach Anwendung von Vorteil sein.

Wirtschaftlich stehen Batteriespeicher im Wettbewerb mit Alternativen wie dem Netzausbau, Abregelung von Einspeisern und anderen Techniken. Wichtig ist es daher, an den regulatorischen Rahmenbedingungen zu schrauben, um in naher Zukunft (bis 2025) einen wirtschaftlichen Betrieb von Batteriespeichern zu ermöglichen. Dies alles in Abhängigkeit von den künftigen Preisen pro Kilowatt für Batteriespeicher. Umso wichtiger ist es laut VDE-Studie, die bestehenden Rechtsunsicherheiten sowie Regelungs- und Definitionslücken in Bezug auf Speicher auszuräumen und einen umfassenden Rechtsrahmen für die Stromspeicherung zu schaffen. Um die gesamtwirtschaftlichen Chancen zu nutzen, müssten also zunächst die hohe Kostenbelastung von Strom durch Steuern und Abgaben gesenkt sowie geeignete rechtliche und regulatorische Rahmenbedingungen gesetzt werden.

Das könnte Sie auch interessieren