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Zusammenfassung
Große Sprachmodelle (engl. large language models, LLMs) haben sich in kürzester Zeit zu einer we-
sentlichen Grundlage für viele intelligente, informationstechnische Anwendungen entwickelt, deren 
Potential bei weitem noch nicht ausgeschöpft ist und sich rapide weiterentwickelt. Große Sprach-
modelle unterstützen nicht nur typische Sprachanwendungen, wie z.B. automatische Diktier- und 
Übersetzungssysteme, sondern erlauben auch die Analyse und semantische Interpretation unter-
schiedlichster Datentypen, u.a. Video, Audio und Radar. Sie sind damit zu einem Treiber, wenn nicht 
gar zum Inbegriff (z.B. in der Form von ChatGPT) der künstlichen Intelligenz geworden. Mit den großen 
Sprachmodellen hat sich eine Technologie entwickelt, die nicht nur die Interaktion zwischen Mensch 
und Maschine in Form von Texten revolutioniert, sondern auch eine Vielzahl von industriellen und me-
dizinischen Anwendungen, wie z.B. die automatische Bildannotation und das Verstehen von visuellen 
Szenen, neu definiert. Ihre breite Einführung erfordert jedoch die Bewältigung ethischer, technischer 
und gesellschaftlicher Herausforderungen, um ihre verantwortungsvolle und gerechte Nutzung zu 
gewährleisten.

In diesem Positionspapier erläutern wir zunächst die technischen Grundlagen und Anwendungen 
großer Sprachmodelle und befassen uns mit Chancen und Herausforderungen für Industrie, Gesell-
schaft und Bildung, die in diesem Kontext stehen. Dabei wird auch auf die Bedeutung einer agilen 
Regulierung, der Ausbildung an Schulen und Universitäten und der nachhaltigen Forschung in diesem 
Bereich eingegangen. Schließlich werden technische Hürden, gerade auch für kleinere Unternehmen 
und Forschungseinrichtungen, sowie auch problematische Aspekte dieser Technologie benannt.

Insgesamt bieten große Sprachmodelle wie GPT-4 eine Vielzahl an Möglichkeiten, die derzeit wirt-
schaftlich weiter erschlossen werden. Es ist jedoch von entscheidender Bedeutung, die damit 
verbundenen Herausforderungen zu bewältigen, um sicherzustellen, dass ihr Nutzen auf nachhaltige 
Weise maximiert wird. In Anbetracht ihrer Abhängigkeit von sprachlichen Ressourcen und der damit 
einhergehenden kulturellen Prägung, müssen deutsche und europäische Firmen und Institutionen in 
die Lage versetzt werden, hierbei eine führende Rolle zu übernehmen. Daher besteht die Notwendig-
keit, die technische Entwicklung und industrielle Verwertung von großen Sprachmodellen in Deutsch-
land, aber auch die Diskussion von Chancen und Risiken in der Öffentlichkeit zu fördern. In diesem 
Gesprächsdiskurs und der Förderung der Technologie sollte man den wirtschaftlichen Möglichkeiten, 
dem dynamischen Transfer aus der Grundlagenforschung in die industrielle Anwendung und vor allem 
auch dem gesellschaftlichen Nutzen große Sichtbarkeit verleihen. Hierbei möchten wir als Verfassen-
de dieses Positionspapiers hervorheben, dass es bei generativer KI nicht nur um die Entwicklung von 
Algorithmen und Software für bahnbrechende neue Anwendungen geht, sondern dass auch weitere 
Fortschritte im Bereich der energieeffizienten, digitalen Hardware und des gemeinsamen Entwurfs von 
Hardware und Software eine wesentliche Rolle spielen. Die enormen Chancen dieser Technologie 
sind mit neuen Herausforderungen verknüpft, die wir in Verantwortung für den gesellschaftlichen 
Nutzen und mit Weitblick auf die nationale und europäische wirtschaftliche Entwicklung und unsere 
technologische Souveränität angehen sollten.
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Executive Summary 
Large language models (LLMs) have quickly become an essential basis for many intelligent, informa-
tion technology applications, the potential of which is far from exhausted and is developing rapidly. 
LLMs not only support typical language processing applications, such as automatic dictation and 
translation systems, but also allow the analysis and semantic interpretation of a wide variety of data 
types, including video, audio and radar. They have thus become a driver, if not the epitome (e.g., 
in the form of ChatGPT) of artificial intelligence. With large-scale language models, technology has 
emerged to revolutionize not only human-machine interaction in the form of text, but also redefines 
many industrial and medical applications such as automatic image annotation and visual scene un-
derstanding. However, their widespread adoption requires overcoming ethical, technical and societal 
challenges to ensure their responsible and equitable use.

This position paper begins by explaining the technical foundations and applications of LLMs and looks 
at the opportunities and challenges for industry, society and education that arise in connection with 
these models. It also addresses the importance of agile regulation, education at schools and universi-
ties, and sustainable research in this area. Finally, technical hurdles, especially for smaller companies 
and research institutions, as well as problematic aspects of this technology are identified.

The rise of LLMs like GPT-4 offers exciting opportunities, but also presents a number of challenges. 
It is vital to address these challenges to ensure their benefits are maximized in a sustainable manner. 
Given their intrinsic dependence on linguistic (and thus cultural) resources, German and European 
companies and institutions should contribute to these developments to the fullest extent possible. 
To this end, we propose that an action plan be drawn up to promote not only the technical develop-
ment and industrial exploitation of LLMs in Germany, but also the discussion of opportunities and 
risks among the public. The economic opportunities, the dynamic transfer from basic research to 
industrial application and, above all, the social benefits should be given high visibility in this dialogue 
and promotion of this technology. As the authors of this position paper, we would like to emphasize 
that generative AI is not just about the development of algorithms and software for ground-breaking 
new applications, but that further advances in the field of energy-efficient, digital hardware and hard-
ware-software co-design methodologies also play a key role. The enormous opportunities offered by 
this technology are linked to new challenges that we should tackle with a sense of responsibility for 
the benefits to society and with a vision for national and European economic development and our 
collective technological sovereignty.



Large Language Models are Transformers in Artificial Intelligence, Industry, Education, and Society

1 Introduction and Motivation
Since their remarkable breakthrough in 2022, large language models (LLMs) have revolutionized 
many applications in natural language processing and artificial intelligence. As of October 2024, 
OpenAI’s ChatGPT, specifically leveraging the GPT-4 LLM, boasts a user base of 200 million active 
users globally and 1.5 billion visits per month (Demandsage, 2024). This significant user base reflects 
the widespread adoption and integration of AI-powered language models (LMs) in various aspects of 
text-generation and translation, computer code-generation, and business operations .

Powered by huge neural networks and trained on diverse and extensive datasets, these models have 
demonstrated an unprecedented ability to comprehend and generate human-like text. Their success 
is built on advancements in deep learning and the increasing availability of computational resources, 
enabling models like GPT-4 and subsequent iterations to push the boundaries of what applications 
in many areas of human-machine communication and data interpretation can achieve. These break-
through achievements have been recently highlighted by the 2024 Nobel Prize in Physics for John 
Hopfield and Geoffrey Hinton, two pioneers in neural networks and machine learning.

At the heart of most of these LLMs is an architecture known as the transformer, an encoder-decoder 
neural network introduced by Vaswani et al. (2017) and modified into a decoder-only system by Liu 
et al. (2018). The transformer DNN leverages self-attention mechanisms, allowing it to weigh the im-
portance of different words in a sentence relative to one another and thus to learn relations between 
words more efficiently than previous architectures. This capability is crucial for capturing context and 
generating coherent, contextually relevant text. Training these models involves processing massive 
datasets containing text from diverse sources, enabling them to learn grammar, facts, and even some 
reasoning abilities. The result is a model that can perform a wide range of language tasks, from trans-
lation and summarization to creative writing, and complex question answering. Furthermore, these 
models may be used in conjunction with other data modalities like video or audio, where they can be 
used in annotation and semantic interpretation tasks.

Training LLMs requires immense computational resources because their neural networks contain 
billions of parameters. Training from scratch also requires extensive datasets, necessitates powerful 
hardware, and requires substantial energy resources. By leveraging widely available text resources, 
major advances have been made through unsupervised pre-training followed by supervised fine-tun-
ing steps, resulting in the generative pre-trained transformer (GPT) as introduced in (Radford et al., 
2018). The training of these systems relies on extensive hardware resources including high-perfor-
mance graphics processing units (GPUs), tensor processing units (TPUs), massive amounts of ran-
dom access memory (RAM), and large data storage systems. Leading-edge data centers are typically 
equipped with thousands of interconnected GPUs to manage the computational load.

The business opportunities and implications of LLMs are vast and multifaceted. Companies across 
various industries are harnessing their capabilities to enhance customer service through sophisticated 
chatbots and virtual assistants that provide instant, accurate responses. In content creation, LLMs are 
being used for summarizing the state-of-the-art in science and technology and other fields of interest 
and for the development of software code, thereby significantly boosting productivity. The healthcare 
sector benefits from these models through improved diagnostics, personalized medicine, and stream-
lined administrative tasks. Moreover, in finance, LLMs aid in market analysis, fraud detection, and cus-
tomer support, offering new avenues for efficiency and service improvement. As highlighted already in 
(LEAM:AI, 2023), all this justifies substantial and increasing investments into infrastructure, research, 
and education.

Despite their potential, LLMs present several risks and challenges. One significant concern is the po-
tential for bias in their outputs, as these models can inadvertently learn and propagate biases present 
in their training data. This can lead to unfair or discriminatory outcomes, particularly in sensitive appli-
cations like hiring or lending. Additionally, the widespread use of LLMs raises ethical questions about 
misinformation and the potential for malicious use, such as generating deepfake content or automated 
disinformation campaigns. Moreover, the environmental impact of training these large models and 
deploying them in widely-used applications is a major concern, as they require a substantial amount 
of computational power, which in turn results in a considerable energy consumption (Desislavov et al., 
2023).
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All of these aspects will be further explored in the next sections of this position paper. Section 2 and 
3 will provide a brief introduction to the background of LLM technology, including hardware and data 
requirements. Readers less interested in the technical aspects may skip these sections and 
move on to Section 4 which outlines applications, services and business potentials. The ne-
cessity and current state of regulatory activities, as well as research gaps, are discussed in detail in 
Section 5. Section 6 concludes this paper and recommends further actions.

Also, LLMs fine-tuned for specific fields of knowledge will be needed for AI deployment for the en-
terprise beyond the general-purpose skills of ChatGPT. This applies to e.g., the field of information 
technology itself where specialized terminology, phrases and acronyms are widespread. AI tools for 
specialized fields of knowledge typically need less effort in training, provide better accuracy, and re-
quire less computation during a session.
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2  Technology Basics
2.1 Generative AI

Very broadly speaking, generative models are systems that can be used to create (or generate) data. 
This data can take many different shapes and forms: For example, as the core focus of this position 
paper, it can be text, generated in response to a user input, the so-called prompt or query. However, 
and in addition, the idea of generative modeling has been employed for many different types of media, 
such as for generating images, audio, or video signals.

Generative models have been around for more than half a century, spanning a broad range of rule-
based and statistical approaches. These include Noam Chomsky’s initial work on language models, 
cast in the form of sets of rules for the generation of admissible sentences, or hidden Markov models as 
purely statistical models that – for a long time – undergirded the most successful algorithms in diverse 
tasks such as decoding mobile communication signals or carrying out automatic speech recognition.

As of today, neural networks have taken generative modeling by storm. Among the first systems of this 
decade that truly caught the imagination of the public and the scientific world alike, were generative 
adversarial networks (Goodfellow et al., 2014), which were able to generate naturally looking images 
by pitting a generator and a discriminator against each other in training, such that the generator model 
learned to create images (or audio) that were virtually indistinguishable from reality, at least by other 
neural networks. Since then, generative models have evolved into powerful foundation models which 
are trained on diverse unlabeled data and are capable of supporting a wide variety of tasks. Founda-
tion models encode relationships between data items and concepts in a relatively general way, mak-
ing them an ideal starting point for developing a broad range of AI applications. 

Today, neural generative models are mostly driven by two types of model architectures – the so-called 
transformers, more technical details on which will follow below, and diffusion models, underlying much 
of current generated art and video and bringing a lot of movement into the field of signal processing  
as well. 

2.2 Large Language Models (LLMs)

In this subsection, we will provide a brief introduction to language models, to transformer-based LLMs 
and their properties, and eventually to ChatGPT-like applications. Given the vast number of publications 
and corresponding developments in this field, we aim to highlight the most important concepts only. 

What is a language model? Language models (LMs) have existed for many decades as fundamental 
components of speech dialog systems, automatic speech recognition (ASR) such as Siri or Google 
Home, spell checking or machine translation tasks. In a nutshell, an LM is a system (be it a set of rules 
or a Markov chain or a deep neural network, DNN), which takes previous letters, sub-word units, or 
words, subsumed as “tokens” in the following, as input and predicts probabilities for the next token. 
One crucial element of these methodologies is the use of word embeddings which map words or, 
more broadly, tokens and their associated context to vectors in a high-dimensional space. By utilizing 
these vectors, the degree of similarity between tokens can be quantified, and predictions regarding 
subsequent tokens can be formulated. Thus, in a bird’s eye perspective, an LM is an “old-text-in / fol-
low-up-text-out” system. LMs have been successfully employed to reduce the word error rates of ASR 
systems, as they take care that reasonable output is generated, with words existing in the respective 
language, and with grammar rules etc. being followed.

How does transformer-based end-to-end automatic speech recognition work? In recent years, 
transformers have become one of the predominant technologies both for end-to-end ASR and ma-
chine translation tasks, but also for standalone LMs. As shown in Fig. 1, a transformer-based ASR 
system typically consists of an encoder with an audio feature sequence as input, and a decoder, joint-
ly called attention-based encoder-decoder (AED) model. The decoder receives the encoder output as 
conditioning information, i.e., a hidden encoded representation sequence of the same length as the 
input audio feature sequence, and receives as further input the tokens, which have been recognized 
before (also called query). As the decoder predicts the probabilities for the next letter or word, an arg-
max function finds the most likely next token and outputs the respective recognized word or letters. 
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Figure 1: High-level block diagram of an attention-based encoder-decoder (AED) model for end-to-end automatic 
speech recognition (ASR). While the spoken audio is converted to a sequence of features and encoded, the 
decoder generates the spoken text in a recursive fashion.
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Figure 2: High-level block diagram of an attention-based LLM based on an arrangement of decoder blocks in a 
recursive generative loop.

This recognized output is then fed back (“T” block in Fig. 1) into the decoder at the next decoder time-
step l. It is important to understand that the encoder timesteps t are regular, for example one feature 
vector per 10 ms, while for a given audio input and hidden sequence, in general the autoregressive 
call of the decoder could run forever. This asynchronicity of encoder timestep t and decoder timestep 
l is solved in practice by terminating decoding, once an <EOS> token has been decoded, marking 
the end of sentence.

The example in Fig. 1 displays the moment, when the entire input audio feature sequence is available, 
accordingly also the entire hidden representation sequence, but the decoder has only been called 
four times (decoder timestep l = 4), with output tokens (here: letters) R, O, C, and K. We still see the 
past output token C being input to the decoder. 

LMs help speech recognition. Note that even an end-to-end ASR system is in practice equipped 
with an extra LM, which would have to be attached to Fig. 1 on the right hand side. This LM also takes 
the previous output token as input, and outputs a probability distribution for the next token. The LM’s 
output probabilities would then have to be fused with the ASR decoder output probabilities, before 
the argmax is taken. We note that from the input/output relations point-of-view, an LM is very similar 
to an AED decoder, except that the LM model has no extra conditioning input from the left. This is of 
high advantage for an LM, as it does not need paired audio/text training data (available only in limited 
amounts), but it can be trained on text only, which is available in abundance on the Internet. The rea-
son is that both its input and output are letters or words. 
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What does an LLM look like? Figure 2 shows such an LM with only text input and predicted text 
output. It consists of a serial call of a number of topologically equal decoder blocks, which are similar 
to the AED encoder blocks in Fig. 1, as there is no second type of input. This type of network block 
is called self-attention block, whereas the AED decoder in Fig. 1 consists of cross-attention blocks. A 
typical AED decoder consists of 6 decoder blocks, whereas an LM can consist of 12 to 100 and more 
decoder blocks, which then justifies the term large language model, resulting in network sizes of 100 
million parameters or even a million times more.

Do transformer-based LMs scale? Early LMs were just a set of (handmade) rules, data-driven 
Markov chains, or, more recently and still today, recurrent neural networks. The attention-based trans-
former displayed in Fig. 2 is a powerful technology for language modeling that is available in very large 
network sizes (100 billion parameters and more), whereby any shrinking down of the network size also 
tends to incur a certain loss in performance. Going the other way and increasing the network size 
more and more, so far, transformers have shown to get better and better, indicating an effective scal-
ing behavior. The expansion of training data and the enhancement of computational capabilities have 
so far consistently led to ever-increasing transformer performance.

Nonetheless, while training time increases with the number of decoder blocks, it increases quadrati-
cally with the signal context length in the attention blocks. This has been recently relaxed by selective 
state-space models, which are recurrent in nature, leading to the so-called MAMBA model (Gu and 
Dao, 2023) as one interesting example. Selective state-space models like MAMBA replicate the suc-
cess of the attention model by selectively using – or not using – parts of the input sequence through a 
selective scan algorithm. In effect, this realizes a time-variant state-space model, which is nonetheless 
well-adapted to GPU computation and efficient in learning, circumventing the usual instabilities and 
vanishing gradients that were previously observed in recurrent models. While any predictions on the 
evolution of this dynamic field of work are necessarily speculative to an extent, the MAMBA model 
and the idea of selective state-space models appears to be highly attractive, as it offers a solution to 
the extreme growth of inference time in long-context models, while remaining easily parallelizable and 
stable during training time.

Additional work is ongoing on addressing the shortcomings of the long-dominant and well-known long 
short-term memory (LSTM) models. While LSTMs (Hochreiter and Schmidhuber, 1997) were highly 
successful in learning sequential data and were indeed long counted among the prevalent architec-
tures in machine learning, especially so for language-related tasks, they have been outperformed by 
the recent transformer architectures. In an effort to reverse this trend, the so-called xLSTM-model 
(Beck et al., 2024) was recently introduced. It incorporates exponential gating and a new memory 
architecture allowing for parallelization. With these updates, the xLSTM, used as an LLM, has also 
recently achieved results that are comparable to both transformer models and state-space models 
when trained at scale, i.e., using billions of parameters and large training corpora.

GPT-3: 96 dec blocks
• Context window 

length L = 2048
• Training data: Common 

Crawl (410B tokens) and 
WebText2 (19B tokens)

• #params: 175 billion =

GPT-2: 48 dec blocks
• Context window 

length L = 1024
• Training data: BookCorpus

and WebText (8M 
webpages)

• #params: 1.5 billion =

GPT-1: 12 dec blocks
• Context window 
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books
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• Context window 
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Figure 3: Evolution of the generative pre-trained transformer (GPT) LLM (Radford et al., 2018; Radford et al., 2019; 
Brown et al., 2020; OpenAI, 2024).
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Evolution of the generative pre-trained transformer (GPT) LLMs: The initial versions of transform-
er-based LLMs were referred to as generative pre-trained transformers (GPTs) since they were only 
trained to predict next tokens on large text databases, without any additional human supervision, i.e., 
in a self-supervised fashion. 

Subsequent experiments, however, showed that pre-trained models can be further improved via a va-
riety of fine-tuning methods. These include supervised learning approaches based on one or multiple 
domain-specific data sets but also on data sets that contain typical user instructions (“Translate …”, 
“Explain …”, “Summarize …”) and corresponding answers. While these purely data-driven approaches 
enhance the relevance of the LLM’s output and may relieve the user of complicated prompt engi-
neering tasks to some extent, LLMs could also be further optimized by fine-tuning on human labels. 
Specifically, the technique of reinforcement learning with human feedback (RLHF), where humans are 
asked to rank different model outputs and this ranking is used to improve generation, led to significant 
improvements in the model output.

In contrast, the LLM network topology remained largely unchanged: Figure 3 illustrates the relatively minor 
topological evolution that took place over the recent years: The number of decoder blocks increased 
steadily from 12 to 96 and beyond, and the input context window grew steadily, from 512 tokens for GPT-1 
to 32768 tokens for GPT-4. This input context is the maximum prompt or query text size that can be pro-
cessed at the LLM input. It can also be seen how the amount of training material grew from one generation 
of GPT to the next. Most impressive, however, is the model size: While GPT-1 consisted of 117 million net-
work parameters, GPT-4 already is one million times larger as it features about 100 trillion parameters.

In-context learning: GPT-3 introduced in-context learning, which is not a training strategy, but a prompt 
engineering strategy. Acknowledging that a so-called zero-shot query is still somehow difficult (“Translate 
English to French: cheese =>”), a one-shot in-context learning approach results in a performance im-
provement of the system (“Translate English to French: love => amour; cheese =>”). This resembles the 
fact that for humans, a task also appears to be simpler if it was specified by examples. For the LLM, it 
can be observed that the larger the model, the more effective a K-shot query becomes with K>0. 

Both scientifically and politically, however, the most interesting and yet still partially unanswered ques-
tion is, how the training of LLMs needs to be performed, both to achieve maximal performance on 
specific tasks, and to ensure safety (e.g. avoidance of harmful outputs) and alignment (correspond-
ence of model outputs with human values and preferences). To address these issues, we need to 
look at two aspects: task-conditioning and alignment to human feedback, as outlined in the following.

Task conditioning: When an LLM is pre-trained, this is done by letting the model predict next to-
kens (or, for masked LLMs, missing tokens) in a given sequence of text tokens. This training employs 
extremely large corpora, but without any additional knowledge or structure being added. It already 
results in surprisingly successful models, but in models that are merely trained to predict well what a 
human author would write next. It is not, however, yet optimized to produce the best output, giving the 
highest-quality answer to all queries and in any application domain. 

Thus, once a basic, predictive model has been trained, the next step of task conditioning adapts the 
parameters in such a way that the model achieves better performance on a set of language process-
ing tasks. Examples of these tasks include natural language inference and question answering. The 
former task requires the model to determine whether a second statement is logically inferred from a 
first one, whether it is neutral to it, or even contradictory. In contrast, question answering involves a 
set of questions and correct answers provided as training material. While this step of supervised task 
conditioning is indeed helpful to achieve better performance on the trained tasks, it turns out that 
reinforcement learning from human feedback is far more effective yet in improving model quality for 
open-world tasks, especially when diverse human-written prompts are involved.

Alignment via reinforcement learning from human feedback (RLHF): All LLM architectures we 
have considered here are probabilistic, i.e., their output is the result of sampling the probability distri-
bution of the next word. This can be conceptualized as a two-step process: 

(1) The transformer finds the set of N possible continuations of a sentence, and the associated proba-
bility distribution. As one example, imagine that the model is tasked with continuing the sentence: “For 
transformers, the greatest…” The transformer will then derive the next N most likely words and their 
probabilities (given in parentheses), which might be (for N = 3): challenge (47 %), advantage (34 %), 
problem (19 %).
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(2) Then, the model will randomly draw the next word from this intermediate distribution. So, the 
sentence would most likely continue with the word “challenge,” but there is also a 34% chance that it 
continues with “advantage,” likely giving the entire continuation (which will then of course build on the 
previous text “For transformers, the greatest advantage”) a much more positive turn.

Figure 4: Training of fine-tuned LLMs using 
custom data and reinforcement learning from 
human feedback (RLHF). 

In this way, as the generation of the next 
word is a process guided both by knowl-
edge (in the computation of the next 
possible words) and by chance (in the 
random draw of the next concrete word), 
it is also possible to draw a number of 
possible answers to any question. This 
is where RLHF comes in: The model 
under training will be tasked to generate 
multiple possible continuations to an 
input. Human raters will then be asked 
to re-rank these, i.e., to order them by 
preference. Finally, the model will be 
re-trained to make the preferred outputs 
more likely than the less highly ranked 
ones, as depicted in Figure. 4.

This step of reinforcement learning has 
proven vital to the performance of LLMs, 

and it also gives designers and developers a handle in the training process, with which to adjust the 
alignment of the model to human preference and value judgements. This is most important, of course, 
to ensure safety of models, and has also been used, with typically great but also varying success, to 
prevent models from bias and prejudice, as may result from imbalances or biases implicitly encoded in 
the training data.

What is ChatGPT? The technologies of GPTs with RLHF forms the core of ChatGPT and of many 
related models, such as Anthropic’s Constitutional AI model or X.AI’s Grok. The fine-tuning stage is 
vital to ensure alignment with human value functions, and much work is being expended on making 
resulting models impervious to adversarial attacks or other attempts to elicit unwanted and potentially 
harmful responses. The scientific community in the field identified major values an LLM in direct dia-
logue with human users should follow. Among these are that the LLM shall be (1) truthful, (2) unbiased, 
(3) not toxic, and (4) not harmful. As mere LLMs just after training do not meet these standards well 
enough, OpenAI as the creator of ChatGPT invested a lot of work to derive ChatGPT from the more 
generic GPT-x family of models.

Based on prior academic work, LLMs such as Google’s Gemini or GPT-4o can also process multi-
modal data as they now seamlessly allow interfacing also to audio, image, and video. This has been 
achieved with single end-to-end models, instead of a former modular approach with user-perceivable 
delays during its use.

2.3  LMs for Annotating Multimodal Data and Scene Understanding

While LLMs have been originally designed for processing spoken or written language as explained 
above, their underlying architecture, specifically the transformer-based models, can be adapted and 
extended to also process other types of information effectively. The technical principle behind this 
adaptation lies in the ability of transformer-based architectures to learn complex patterns and relation-
ships within sequential data, which can be applied not only to linguistic data but also to a wide variety 
of modalities. Of course, the selection of modalities depends on the desired application and the 
available sensors. In the context of combining text and image or video data, for instance, LLMs can be 
leveraged along several pathways:

�ne-tuned model

pre-trained model

development

application

pre-process and

consolidate data set

large data set drawn

from public resources

custom data

RLHF
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Pre-training with multimodal data: To enable LLMs to understand visual information, models can be 
pre-trained on large datasets containing both textual and visual information. This pre-training process 
involves presenting the model with pairs of images and corresponding textual descriptions or labels. 
By processing these multimodal inputs together, the model learns to associate visual features with 
linguistic representations, effectively capturing the relationship between images and their textual de-
scriptions.

Fine-tuning on specific visual tasks: After pre-training on multimodal data, LLMs can be fine-tuned 
on specific visual tasks, such as image classification, object detection, image captioning, or video un-
derstanding. During fine-tuning, the parameters of the model are adjusted using labeled visual data to 
optimize performance on the target task. This process allows LLMs to adapt their learned representa-
tions to better suit the nuances of visual processing tasks.

Integration of visual attention mechanisms: Attention mechanisms, which are central to transformer 
architectures, play a crucial role in processing both linguistic and visual information. These mecha-
nisms allow the model to focus on relevant parts of the input data while generating outputs. In the 
context of visual processing, attention mechanisms enable the model to selectively attend to different 
regions of an image or video, allowing for more precise analysis and understanding.

Cross-modal interaction: LLMs facilitate cross-modal interaction, enabling information exchange 
between linguistic and visual modalities. This interaction allows the model to leverage the semantic 
context provided by textual descriptions to better understand the visual content, and vice versa. For 
example, when generating textual descriptions for images, the model can simultaneously incorporate 
visual features to ensure that the generated captions are more accurate.

Employing these technical principles, LLMs can effectively process visual information, enabling tasks 
such as image understanding, automatic image annotation, and video processing.

In image understanding, LLMs can analyze and interpret images or videos by generating descriptions, 
identifying objects, and inferring relationships between elements within the scene. This capability 
opens up new applications across industries. For instance, in e-commerce, LLMs can automatically 
tag products within images, enabling more efficient cataloging and search functionalities. In health-
care, they can assist in medical imaging analysis, aiding in the diagnosis of diseases or abnormalities. 
Moreover, in security and surveillance, LLMs can help in identifying suspicious activities or objects.

Automatic image annotation is another area where LLMs improve performance. By leveraging their un-
derstanding of language and context, they can generate descriptive captions or labels for images, sig-
nificantly reducing the need for manual annotation efforts. This has profound implications for content 
management systems, social media platforms, and digital archives, where vast amounts of images 
require organization and categorization.

In video processing, LLMs enable advanced capabilities such as automatic video summarization and 
content recommendation. They can automatically parse through hours of video footage, extracting key 
information, and providing concise summaries. This is valuable in fields like media and entertainment, 
where content creators can utilize LLMs to streamline the editing process or personalize content rec-
ommendations for users.

Finally, we note that LLMs also have the potential to explain output data from a variety of other modalities, 
such as proprioceptive sensors in robotics, radar sensors, or other difficult to interpret sensors by creat-
ing a description of the multimodal data and eventually the underlying scene. The prompt that is typically 
used to interact with the LLM is then replaced by sensor data and the model needs to be re-trained. 
Since the amount of data available for less common types of sensor output is usually not comparable to 
the size of text or image-based training data sets, the use of a smaller language model, i.e., a reduced 
LLM, may be a more viable option. Such a procedure would also support the explainability of neural net-
work sensor processing, especially if a human interpretable output can be produced by the LLM.

How sensor data is converted and fed into the LLM is an open problem. In the case of radar signals, 
one option might be the approach of a talking radar (Visnevski et al., 2007) converting pulses to letters 
and thus building words and phrases. A potential application might be a warning interface in a car giv-
ing a detailed description of the current situation around the car, e.g. “Attention, animals 100m ahead 
on the left side of the road between the trees.” A safety-critical aspect of this application scenario is 
the highly reliable identification of objects and scene understanding from the sensor data.
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Despite their immense potential, the integration of LLMs in novel (and possibly non-linguistic) appli-
cations poses several challenges. Firstly, ensuring the ethical and responsible use of these models 
is paramount, particularly in sensitive domains like healthcare, cybersecurity or surveillance. Issues 
surrounding bias, privacy, and security need to be addressed. Additionally, LLMs require substantial 
computational resources and data to train effectively, limiting their accessibility to smaller organizations 
or educational institutions with fewer resources. Nevertheless, the range of (multimodal) applications 
of LLMs and generative AI has not yet been fully explored. The examples of use in vision and radar 
processing discussed above merely scratch the surface of the diverse spectrum of potential applica-
tions.
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3  Data and Hardware Require-
ments

3.1 Training Data

For the training process of powerful pre-trained LLMs huge amounts of textual data resources are 
required. Training data for state-of-the-art LLMs (e.g. Mistral, OpenGPT-X, Poro, Llama, etc.) consists 
of up to 15 trillion tokens to train models of increasing size, ranging from 7 billion, 24 billion, 70 billion 
to more than 400 billion parameters. These tokens are pragmatic subword units which are created au-
tomatically by a tokenizer module. The selection of training data is a crucial process to achieve ethical 
and non-biased LLMs. The amount of training data should be huge (measured in terms of words or 
tokens) as more data typically leads to better model performance. It should cover different domains 
(such as medicine, finance, or the legal domain) to be able to support tasks in these domains. The 
data should comprise different types of textual content (such as dialogue, speeches, books, news 
articles) to learn about different types of queries and responses corresponding to styles of user in-
teractions. Further, the data should have high quality (including aspects such as noisy content, toxic 
or offensive content, and duplicate content). LLM training data is derived from large text corpora, pre-
dominantly from internet crawls of web pages and publically available text resources.

In the OpenGPT-X project (funded by the German Federal Ministry for Economic Affairs and Climate 
Action, BMWK), for instance, text corpora are processed with a data pipeline which transforms raw 
data into high-quality training data, addressing the requirements mentioned above. The data compris-
es i) web data (originating from CommonCrawl crawled web pages) and ii) publically available curated 
data sets. As a first step, the data is converted into a common format, converting CommonCrawl 
WARC/WET files and curated datasets in a variety of different formats (e.g., CSV, plain text, SQL 
dumps, XML) and into JSONL files, which can be used for the training process. One line in a JSONL 
file corresponds to one document, stored together with document metadata.

Overall, OpenGPT-X uses more than 2.5 trillion tokens for training LLMs, consisting of roughly 80% 
web data and 20% curated data. The web data is processed with the Ungoliant pipeline (Abadji et al., 
2021), which detects the content language and computes quality warnings (e.g., for harmful content). 
Subsequently, only documents in languages of interest are kept and documents with a quality warning 
are filtered out. The remaining data set is then de-duplicated, using MinHash/LSH with a Jaccard (sim-
ilarity) index of 0.7 to filter out nearly identical documents. The amount of raw data is reduced by filter-
ing by about 17% and by de-duplication by about 25%. Curated datasets are processed in a similar 
way: The content language is detected and documents are enriched with metadata corresponding to 
quality metadata. Low quality documents are filtered out. The list of curated datasets used for training 
of the OpenGPT-X models includes Wikimedia datasets (Wikipedia, Wikisource, Wikibooks, Wikinews, 
Wikivoyage), scientific articles (ArXiv, Pes2o, dissertations of the German national library), patents (from 
the European, World, and US patent offices), legal documents (e.g., OpenLegaldata, court decisions 
and laws), publications of German institutions (e.g., plenary protocols of the German Bundestag), and 
source code (e.g., StarCoder).

OpenGPT-X has scaled up processing from initially two languages (EN, DE) to five languages (EN, DE, 
FR, IT, ES), to the 24 official EU languages. Wide coverage of languages ensures a fully multilingual 
model for European societies. The representation of under-resourced languages, e.g., Irish/Gaelic or 
Maltese, and dialects is an open research issue which is addressed in several European initiatives 
(e.g., European Language Grid). 

For multimodal foundation models additional data sets are required, e.g., huge speech corpora, 
video/image, or radar signal corpora. Audio, video and image data typically also includes a textual 
component in the form of audio transcripts or image captions. Many LLMs are also trained with code 
in a variety of programming languages to support the usage of LLMs for programming co-pilots and 
code generation. However, because of their limited reasoning capabilities, the use of LLMs for these 
purposes remains problematic, with known shortcomings in terms of the correctness, safety and effi-
ciency of the programs thus obtained.
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3.2 Hardware and System Concepts

The training of LLMs and corresponding large-scale inference requires a huge amount of computa-
tional resources, which nowadays are provided by dedicated multi-core systems, utilizing Graphics 
Processing Units (GPUs) with software environments such as CUDA to allow for highly parallelized 
processing with large throughput and high memory bandwidth. Especially for the training of LLMs from 
scratch, huge and specialized high-performance computing (HPC) centers are required, typically us-
ing 1000 and more GPUs. The latest advancements in GPU technology have significantly contributed 
to the feasibility of training LLMs. For instance, NVIDIA’s A100 and H100 Tensor Core GPUs are de-
signed specifically for AI and deep learning tasks. NVIDIA’s Hopper architecture, featured in the H100 
GPU, incorporates innovations like the Transformer Engine, which is optimized for the computations 
used in LLMs. Currently only a few of these HPC systems are available in Germany, like the JUWELS 
HPC system at Forschungszentrum Jülich including the JUWELS booster module, which contains 
3744 A100 GPUs. This HPC system has been used to train the OPENGPT-X models. For success-
ful LLM training, the parallelization of GPUs and the fast transfer of data and model parameters are 
important and therefore InfiniBand networking is used to guarantee low latency data transmission 
across GPUs. Beside Forschungszentrum Jülich, the Technical University of Dresden and the Leibniz 
Supercomputing Centre of the Bavarian Academy of Sciences and Humanities, for instance, operate 
scalable HPC facilities for model training. In other European countries, EuroHPC centers, like Lumi, 
Leonardo, MareNostrum, and Melunxina offer large GPU capacities for the pre-training of LLMs. Ob-
viously, these and other AI-related developments will consume not only hardware resources but also 
huge amounts of electric power. For instance, OpenAI recently announced plans for data centers con-
suming as much as 5 GW of electric power. Providing this amount of power in a carbon-free fashion in 
the near future will be a tremendous challenge, and will require detailed considerations of renewable 
as well as alternative power resources.

For fine-tuning and model inference (operation of LLMs for usage), different HPC set-ups are required. 
Fine-tuning of pre-trained models requires significantly less resources and can thus also be achieved 
outside large and centralized data centers. Here, the main challenge resides in the acquisition of 
sufficient amounts of task-specific data. Model inference often requires the deployment within an 
embedded system architecture. With the help of neural co-processing cores, small-to-midsize LLMs 
may be evaluated on embedded platforms. In general, AI-accelerators are currently moving also into 
(rechargeable) battery-operated devices, making advanced inference available in mobile devices such 
as smartphones and hearing aids. Nevertheless, energy-efficiency of such methods remains a press-
ing issue.

Although today’s digital technology is very much optimized for low energy consumption, there is still 
a physical limitation as transistors generate heat with each read or write step. As large temperatures 
will degrade the efficiency of the device, or even damage it, heat management is an integral part of 
the system design at all scales, from individual dies to large GPU clusters and computing centers. 
Down-scaling the feature size to sub-nm regions leads to less energy storage and conduction on 
the gates of the semiconductor device, but also degrades the stability of binary data. To counteract 
this effect and to improve the transistor’s physical properties, engineers have devised specific archi-
tectures for the core component, the field-effect transistor (FET). A major improvement has been the 
fin field-effect transistor (FinFET) using a multigate structure. It was transferred from research into the 
fabrication lines already in 2010 for a feature size down to 14nm. Using this approach, the most ad-
vanced, high-volume devices fabricated by TSMC in Taiwan have reached 3nm. 

Beside down-scaling the feature size and increasing the number of transistors per chip area in ac-
cordance with Moore’s law (see Figure 5), there are several new approaches to overcome the limita-
tions of these traditional chip design methods. A selection of novel research fields which have reached 
different levels of technological readiness (TRL) and possess the potential to open new routes in data 
processing in the context of LLMs are summarized as follows:

• multilevel data storing in a single memory device as in phase-change-materials

• mixed-signal data processing circuits based on the state-of-the-art technology in CMOS integra-
tion

• integration of electrical-optical signal processing devices within system-on-chip (SoC) architec-
tures
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• partial analog signal processing with customized analog circuit devices 

• neuromorphic computing approaches including novel information processing paradigms inspired 
by signal processing in biological systems

• quantum computing approaches on different hardware platforms, e.g., using spintronics.

All of these technologies are still under research and therefore have very different levels of maturity. 
One of the most prominent is the very active research field of neuromorphic computing, where various 
implementations in CMOS technology have been successfully demonstrated. Even if most of these 
implementation and integration examples are not available in the most advanced semiconductor 
process nodes, their functionality is scalable under defined conditions. The principle is based on the 
fact that with the recently introduced memristor device a new kind of information processing and data 
memory cell can be merged in one nm-scaleable device. One of the promising types of memristors 
is the resistive RAM called RRAM, used primarily for in-memory-computing. These novel electronic 
devices play a similar role for memory, learning and inference as neurons and synapses in biological 
neural systems (Schuman et al., 2022). As in nature, neural processing may be implemented in the 
form of spiking neural networks (SNN) and continuous reinforcement learning, whereby the latter aims 
to establish the defining weights for the information pathways in the network. Regarding the design of 
such systems there are no boundaries yet defined and therefore they are a perfect platform for funda-
mental research. However, the different research results and activities are in most cases not sufficient-
ly mature for the integration in industry processes.

Figure 5: Summarizing CPU and GPU design trends with product data a) CPU and b) GPU transistor count vs. 
the years in development (Sun et al., 2020 )

The motivation for industry applications is derived from the potential applications of these novel sys-
tems in consumer electronics or, more generally, in marketable products. The everlasting question is, 
how to transfer research into the market. Here, the standardization of engineering parameters might 
open a valuable pathway. The promising aspects of neuromorphic computing is to achieve a higher 
integration and more energy-efficient data processing and storage with a computing performance 
similar to the human brain. This could be especially attractive for adaptive on-the-fly training of neural 
networks, and eventually LLMs. As this development still requires major research and development ef-
forts, the Information Technology Society (ITG) in the Association for Electrical, Electronic & Information 
Technologies (VDE) is currently working on a harmonization of common terminology and a layer model 
from defined application requirements, algorithms, over hardware systems, circuit architectures, chip 
design, devices and material choices. This document is titled “Neuromorphic computing based on 
new devices – a layer model for developing AI hardware”, and is referenced as VDE SPEC 90033 V1.0 
(en). The intention of this document is to advance this technology and to specify uniform definitions in 
this field of research and development, as well as developing a coordinated joint understanding of its 
pros and cons.

The second field that deserves a closer look is quantum computing. Quantum natural language pro-
cessing (QNLP) is an emerging field that applies quantum computing principles to enhance natural 
language processing. Companies like IBM, Microsoft, and Quantinuum are developing QNLP archi-
tectures to process language in quantum circuits (Lorenz et al., 2023). Quantum computers offer the-
oretical advantages in certain types of computations, particularly those that require high parallelism or 
the ability to exploit quantum entanglement and superposition. Quantum computers have the potential 
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to solve problems significantly faster than would be possible on classical computers, especially for 
problems that would take exponentially longer on classical systems. This could be particularly useful 
for complex NLP tasks such as semantic analysis or machine translation. While quantum systems 
promise faster solutions for complex NLP tasks like semantic analysis, they currently face challenges, 
such as the need for extensive cooling and scaling for large-scale applications. Quantum algorithms 
specific to QNLP are still in the research and development phase and need further optimization and 
adaptation to provide realistic advantages over classical systems.
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4  Applications, Services, and 
Business Potential

4.1 Applications

LLMs are an enabling technology for a variety of applications. In what follows, we will briefly summarize 
the most prominent areas.

Machine translation: As LLMs have emerged from natural language processing (NLP) tasks, it is 
obvious that natural language applications are amongst the most important commercial use cases. 
One first such task is machine translation. Although the majority of large-scale systems still rely on 
traditional task-specific encoder-decoder models, some commercial products start to utilize LLMs for 
text-to-text translation, and achieve an acceptable quality for many tasks, such as book translations, 
translations of social media texts, and websites (Gao et al., 2024). The quality is comparatively lower 
for speech-to-speech translation tools, but first commercial products already enter the market, e.g., 
on mobile phones, and also mixed forms (e.g., speech-to-text translation in live dubbing) may result 
in valuable applications. Translation usually comes to its limits when low-resource languages are ad-
dressed, and even for the German language there are far less models available than for widespread 
languages such as English. Providing LLMs for a large set of (low-resource) languages is a primary 
task for language equality in Europe, and should be supported on a national level via funded projects 
to set up competitive open-source models (Robinson et al., 2023). This also relates to language diver-
sity within a language, such as easy language (“leichte Sprache”) which is legally required to improve 
accessibility, but where comprehensive resources are more-or-less completely missing (Freyer et al., 
2024). Another example is speech-to-sign-language translation. As tools for such languages address 
a smaller portion of the population, they will be commercially less viable and thus require public fund-
ing.

Customer chat tools: A second popular natural language task for LLMs is customer chat. Chatbots 
offering customer care services are becoming increasingly prevalent across a diverse range of do-
mains, and the larger the domain is, the more interesting it gets to use LLMs. LLMs may be used in 
the front end (e.g., for natural language understanding, domain classification, call redirection), in dialog 
management (selecting the next turn), in response generation, as well as for backend tools such as 
question answering and summarization for call-center agents. In such situations, LLMs may improve 
performance of the individual tasks, and may cater for a larger variety of users, including different 
languages. In turn, LLMs might be less appropriate when information for processing tools with defined 
and limited functionalities is to be collected; in such use cases, well-structured dialogues following 
fixed grammars may provide better results (Waisberg et al., 2024).

Computer programming assistance: Language-related applications which go beyond natural lan-
guage include LLM-based programming tools. Such tools may facilitate the programming process by 
co-programming, i.e., an LLM-based wizard providing a raw code with basic functionality, which then 
can be improved by a human programmer. They may also be used for source code conversion, i.e., 
from one programming language to another one, or for data visualization and understanding. While 
such tools have already increased the productivity of software developers significantly, it is important 
to note that the human programmer is still responsible for the correctness and consequences arising 
from the code; thus, appropriate validation steps need to be foreseen in the code generation process 
(Jury et al., 2024; Gabbay and Cohen, 2024).

Knowledge representations: As LLMs so far are LMs learning the structure of text and the implicit 
connections, there is actually still a gap of explicit knowledge representation (d’Amato et al., 2023). 
But efforts are made to combine LLMs with knowledge graphs to enable knowledge management, 
contextual analysis, and collaborative information sharing (Pan et al., 2024). This combination would 
help to convert unstructured data to structured graphs and thereby gain a deeper understanding of 
the initial data, also in terms of identifying flaws or open issues. 

Social media analysis and the generation and detection of fake news: The application of LLMs in 
social media spans various functionalities, significantly enhancing user experiences and content man-
agement. LLMs are pivotal in facilitating co-writing skills. Additionally, LLMs empower efficient search 



Large Language Models are Transformers in Artificial Intelligence, Industry, Education, and Society

functionalities for users that do not know or have difficulties in defining exact and suitable search 
terms. LLMs’ translation capabilities further break down language barriers, fostering global connectiv-
ity and communication. Sentiment analysis is another vital aspect wherein LLMs discern and analyze 
user emotions expressed in social media content, offering valuable insights into public opinion trends 
(Ampel et al., 2024). Furthermore, as LLMs enable text-style conversion while preserving information 
and context, they can be utilized as an anonymization method to ensure user privacy and security, 
safeguarding personal data in the digital realm (Sinha et al., 2024). However, the widespread integra-
tion of LLMs in social media also raises consequential considerations. Currently, there is a contentious 
discourse surrounding the role LLMs could play in the generation of fake news. However, LLMs can 
equally be utilized in the detection of fake news, aiding in the preservation of digital integrity and the 
dissemination of accurate information.

Public administration: Another use case of LLMs can be found in politics and public administration. 
Here, LLMs can leverage their previously described strengths to provide customized chat services 
and elucidate processes in various languages including simplified language, as well as perform 
text-related tasks such as summarizations, key wording, cross-referencing (Cheong et al., 2024; Mu-
sumeci et al., 2024). 

4.2 Performance Evaluation and Legal Aspects of Deployment

Whereas most current assessments of LLMs focus on the performance of the models to achieve 
certain tasks (Yang et al., 2024), less effort has been spent on the subjective evaluation of LLM-based 
tools, including the perceived quality of LLM-generated texts. Performance indicators include the 
accuracy of LLMs to answer questions, extract information, identify disinformation or sentiments, and 
corresponding task-based metrics serve the comparative assessment of different tools fulfilling such 
tasks (LLM-based or not). In turn, perceived quality requires users to rate the quality of generated text, 
or of interactions held with LLM-based chatbots. Such subjective evaluations should cover both, the 
content of the generated output such as correctness and avoiding hallucinations, and the form such 
as grammaticality, coherence, transparency, or complexity. Corresponding methods are frequently de-
veloped ad-hoc, and standards to make such evaluations comprehensive and comparable still need 
to be developed.

Thus, LLMs contribute to barrier-free access, facilitating inclusive communication and information 
dissemination. However, their widespread adoption mandates robust regulation on open-data usage 
to mitigate potential risks and ensure ethical deployment, including intellectual property (IP) remuner-
ation and licensing models, and responsibility for correctness and liability. This applies especially to 
the areas of data sovereignty and sensitive data, highlighting the necessity for an essential aspect: 
the establishment and operation of extensive European hosted server capacity, combined with the 
development of skills within companies, enabling them to train or fine-tune decentralized models for 
privacy-sensitive or IP-sensitive models.

4.3 LLMs in Education

As mentioned before, comprehensive user education programs become imperative to promote digital 
literacy and responsible engagement with LLM-powered features. It is short-sighted to offer user train-
ing solely within the professional context; it is crucial to embed this knowledge as early as possible 
in school education, both as tools and subjects of study. This is usually denoted by the term GenAI 
readiness (Dettmer et al., 2024). An important skill in utilizing LLMs pertains to prompt engineering, i.e., 
the successive refinements of the instructions given to an LLM in order to provide the desired output. 
The output of an LLM may vary significantly with each (additional) prompt and may include incorrect 
responses (also known as “hallucinations”) or biases. Therefore, the user must be educated to craft 
appropriate prompt sequences and empowered to assess the validity of the answers given by an 
LLM.

In an educational context, LLMs can then be used to facilitate text generation, quiz/examination crea-
tion, educational dialogues, and even hypothesis testing, argument generation and texting. However, 
their integration into the educational setting implies significant consequences and requirements. 
Firstly, the type of examination has to change from knowledge repetition and checking the final results, 
moving towards accompanying and querying the learning process and explaining correlations. Fur-
ther, emphasizing examinations that highlight original and personal work, fostering critical thinking and 
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creativity is essential. Additionally, educator training must incorporate fundamentals of LLMs, ensuring 
teachers are equipped to leverage these tools effectively (Adarkwah, 2024). Moreover, equitable 
access to LLM services for all educators and students is paramount. Also, education on intellectual 
property rights (IPRs) becomes imperative in light of the prolific use of LLMs. Thus, embracing LLMs in 
education requires a comprehensive approach that addresses both pedagogical and ethical consider-
ations.
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5  Seizing Opportunities,  
Addressing Challenges, and 
Mitigating Risks

The recent developments of AI based on foundation models have been surprising even for experts 
that have long been in the field. Although the developments are somewhat more predictable and 
interpretable for experts, it is not surprising that regulatory bodies face many challenges in keeping 
pace with these developments and creating reliable guardrails for the technology while supporting 
innovation.

While consultants and economists have tried to foresee the opportunities of LLMs and even to esti-
mate their economic potential, it will be difficult to provide reliable figures. It may even be the case that 
developments will follow Amara’s Law, so that we tend to overestimate the speed of developments 
in the short term and underestimate the long-term impact today. Indeed, after a substantial hype 
surrounding generative models, some disillusion is also setting in: generative models are becoming 
ever more expensive to train, are exceedingly data hungry – leading to law-suits and debates around 
fair use of human-written text and human art without licensing – and they may not always lead to 
the strong business models that were originally envisioned. Nevertheless, LLMs have triggered a 
large number of new ideas, developments and applications, some of which are outlined in Section 4. 
Sustained investments are now necessary to harness their added value, to create profitable business 
models, and to further develop LLMs towards intelligent agents in a variety of contexts.

While there are encouraging examples of how large-scale computational resources and shared data 
repositories can be developed in Germany (e.g., project nxtAIM, creating foundation models for au-
tonomous driving), small and medium enterprises (SMEs) still face substantial challenges when adopt-
ing LLMs and tailoring them to their business needs. Addressing these challenges requires strategic 
planning, and a careful management of investments in skills and infrastructure. On the one hand, the 
costs associated with acquiring high-performance GPUs, data storage, and the energy consumption 
needed for training and maintaining large models present a significant financial burden. On the other 
hand, dependencies on third-party providers for LLM solutions limit flexibility and increase long-term 
costs. While the cost of training an LLM from scratch may be prohibitive, added value can also be de-
veloped by fine-tuning existing models, a route that is more viable for SMEs and academic institutions. 
Furthermore, the use of LLMs may raise significant privacy and security concerns, particularly in highly 
regulated industries such as finance, healthcare, and legal services. Moreover, SMEs must protect 
their own sensitive information from breaches. Compliance with industry-specific regulations, stand-
ards, and best practices can add an extra layer of complexity to the deployment and use of LLMs.

It is important to note that this technological window of opportunity coincides with a significant loss in 
workforce due to retirement of the “baby boomers”. This has already begun to impact Germany. It is 
absolutely clear that we will be more dependent on technology in the future to ensure the functioning 
of public administration, mobility and logistics, the medical system, production, commerce, farming, 
and many other areas. LLMs require specialized knowledge to deploy and fine-tune effectively. Es-
pecially SMEs may lack the in-house expertise needed to manage these sophisticated technologies 
and hiring or training staff with the requisite skills in machine learning, data science, and software 
engineering is challenging and costly. This expertise gap can hinder the effective implementation and 
optimization of LLMs. Nevertheless, it would be unwise to not attempt to establish technological sov-
ereignty in this field.

5.1 Scientific Challenges and Research Gaps

LLMs also pose significant scientific challenges for research and development of products under 
regulatory demands, especially in the wider socio-technological contexts and regarding AI trustworthi-
ness (European Commission, 2019). The more technically focused scientific challenges, as described 
in previous sections, are largely due to the frontier nature of LLMs and foundation models. These 
encompass questions of model robustness and reliability, limits in computing resources, energy effi-
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ciency of model training and inference, availability of data, developing multimodal capabilities, or the 
reproducibility of scientific results (Maslej et al., 2024; OECD, 2023). However, even of more public 
significance are connected challenges of broader socio-technological nature, amplified by the fast 
technological advancement of AI models (Dahlin, 2021). These challenges and related opportunities 
are the subject of an ongoing and important societal debate, see (Simon et al., 2024) for a recent dis-
cussion, and they are reflected in major research gaps as follows:

Assessing trustworthiness of AI systems, especially concerning factual accuracy, bias, and trans-
parency is essential. Ensuring that the outputs of AI systems, and in particular of LLMs, are reliable 
and grounded in factual information is a major challenge. Even though some LLMs are able to reach 
impressive performance on benchmarks, they struggle with complex reasoning, providing consistent 
factual answers, and explaining their decisions, which affects their overall trustworthiness and quality 
(Maslej et al., 2024). Moreover, the inability to properly manage misinformation in the use of LLMs and 
its potential impact on democratic processes (e.g., elections) is a major concern that requires further 
in-depth research attention. Additionally, there is a lack of efficient and effective international standards 
on AI trustworthiness and AI quality, particularly regarding privacy, accountability and ethical use of 
AI, underscoring the need for deeper research into AI policy and governance structures. To develop 
effective and efficient international standards, independent tests encompassing real live environments 
would be useful. This research challenge is not just technical, but also involves legal, regulatory and 
societal dimensions (Bourg et al., 2024; Bareis, 2024; Orwat et al., 2022; Folberth, 2022).

Ensuring bias and fairness across diverse datasets and applications is an unresolved challenge. 
There is a need for more advanced methodologies to detect and correct biases in both the data and 
the model training process. Generative models amplify existing biases present in the training data 
and may perpetuate harmful stereotypes or influence decision-making processes in critical areas like 
healthcare, finance and human resources. Finding solutions addressing this gap is critical, ensuring 
trust and quality in the ability of AI to operate without perpetuating social inequalities. The results 
would be very useful for many applications including the finance and insurance sector (Agu et al., 2024).

Addressing data quality and transparency, especially concerning insufficient transparency in how 
the datasets are sourced. Non-transparent data collection may lead to contamination with unreliable or 
biased data and potential copyright issues (Hardinges, 2024). Furthermore, the performance of gen-
erative models may degrade over time, especially when training on their own outputs, a phenomenon 
known as “model collapse” (Alemohammad, 2023). Addressing these challenges requires transparent 
data, effective data governance, transparent data quality processes, improved curation of data, and 
transparent documentation of training datasets.

Explainable AI (XAI) for ensuring trustworthiness and quality, particularly in high-risk and highly regu-
lated areas like healthcare or legal systems. Despite some progress in explainability and interpretability 
techniques, such as Saliency Maps, LIME, and SHAP, there remains a significant research gap on 
making complex models more interpretable and explainable to both developers and end-users (Mane, 
2024; Salih et al., 2024), especially in the context of large generative models, see for example (Saran-
ya and Subashini, 2023; Zhao et al., 2024).

Ensuring security and adversarial robustness in unpredictable or adverse environments and in 
the presence of unexpected or malicious inputs or adversarial attacks is particularly crucial when AI 
systems operate in real-world applications where the data they encounter may not match their training 
sets, where cybersecurity risks are high, and where misuse of AI systems such as LLMs may have a 
large impact (Maslej et al., 2024). Resources such as the ENISA multilayer framework for good cyber-
security practices in AI1 or the NIST Taxonomy and Terminology of Attacks and Mitigations2 are already 
well elaborated frameworks which need further developments and more implementation practice. 
Addressing the additional AI-related cybersecurity risks and vulnerabilities in AI systems is essential for 
the security and safety of AI applications.

Assessing the safety of AI systems, particularly related to how AI models can be systematically 
tested for robustness and safety in real-world applications. Stronger benchmarks and frameworks to 
assess AI performance, particularly in dynamic, high-stakes environments like healthcare and autono-
mous systems, are being needed (Mirzarazi et al., 2024; Alenjareghi et al., 2024).

1 See Multilayer Framework for Good Cybersecurity Practices for AI – ENISA
2 See AI 100-2 E2023, Adversarial Machine Learning: A Taxonomy and Terminology of Attacks and Mitigations | CSRC

https://www.enisa.europa.eu/publications/multilayer-framework-for-good-cybersecurity-practices-for-ai
https://csrc.nist.gov/pubs/ai/100/2/e2023/final
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Automatic, continuous and exhaustive AI software testing currently relies largely on snapshots 
whose methodologies still involve substantial manual testing and is limited by a lack of tools and meth-
ods for proper verification. To ensure quality of testing, continuous, autonomous, independent and 
verified testing results are essential. AI system provider, deployer and user that use products which fall 
under the high risk class according to the EU AI Act would greatly benefit from permanent, automated 
independent software testing.

Overall, these challenges are not unlike those encountered in AI research in general, but are exac-
erbated by the complexity of LLMs and the limited transparent access to typical foundation models 
such as GPT-4, see (Maslej et al., 2024) for a general overview.

5.2 Risk Mitigation through Agile Regulation

Addressing these challenges and risks increasingly becomes the subject of regulatory demands and 
the need for compliance testing and product certification schemes. Still, as with any other technology, 
we advise not to take current limitations of systems in one or several of these points as “show-stop-
pers”, but rather as demands that can be met by further research, guard-railed by societal monitoring 
and regulation. The final version of the EU AI Act makes it clear that AI systems – including LLMs – are 
mostly exempt from regulation when only developed for purposes of research, thus ensuring that 
future research can rise to the challenges. This will facilitate the testing of potential regulations in ac-
tual operational contexts, allowing for an assessment of their suitability in achieving the defined goals 
before their issuance3.

European AI Regulation largely aims at mitigation of risk associated with those challenges that are 
deemed relevant from a societal point of view. Within the EU, good examples with relevance for LLMs 
are regulations such as the General Data Protection Regulation (GDPR), the AI Act, and the Digital 
Services Act (DSA). For instance, in the AI Act, considered risks are those to the fundamental rights, 
health and safety of human beings, which, by and large, connects to the scientific challenges listed 
above.

The risk-based approach in the AI Act (European Parliament & Council, 2024) defines different sets of 
requirements and obligations, which providers and deployers of AI systems need to follow, with most 
requirements focused on high-risk AI systems. There are specific definitions4 on which systems would 
be considered high-risk, depending on their field of application (e.g., in biometrics or critical infrastruc-
ture) and the specifics of their use, e.g., if the AI system is part of a safety component of a product. 
Additional guidance is provided for the self-conducted risk assessment of AI systems by providers and 
deployers, and beyond the clearly defined classes of high risk AI systems, the categorization of risks 
can still be interpreted flexibly, depending on the specific needs of the providers or deployers. Highly 
relevant for LLMs, there are additional specific requirements for general purpose AI (GPAI) models5, 
and even more strict requirements for the largest GPAI models identified as of “systemic risk”. LLMs 
and, more generally, large generative AI models (LGAIMs) fall under the category of GPAI models, with 
the largest current LLMs being already considered of systemic risk6. These requirements always need 
to be fulfilled, regardless of the risk class category of the overall AI system. The regulation of GPAI 
models has been added to the AI Act as a direct response to the GPT models taking the discourse of 
LLMs to the forefront in society.

Requirements and obligations in the AI Act directly aim at a wide range of risks connected to the 
discussed scientific challenges and can largely be considered an implementation of the concepts of 
trustworthy AI into requirements, ranging from transparency and human oversight to the completeness 
of training data, robustness and security of AI systems. Since the AI Act follows the new legislative 
framework (NLT) on product regulation7, by design, it only sets down requirements around high-level 
concepts and explicitly aims at developing more detailed technical guidance in standardization togeth-
er with the European standardization bodies, most notably CEN-CENELEC. Currently, the joint tech-

3 For a recent example, see the foreseen use of regulatory sandboxes in the AI Act, in Chapter VI, Art.57, AI Act.
4 See Chapter 3, Article 6, AI Act and Annex III AI Act for the definitions.
5 Defined in Chapter 2, Article 3 AI Act as: “general-purpose AI model’ means an AI model, including where such an AI model is 

trained with a large amount of data using self-supervision at scale, that displays significant generality and is capable of competently 
performing a wide range of distinct tasks regardless of the way the model is placed on the market and that can be integrated into a 
variety of downstream systems or applications, except AI models that are used for research, development or prototyping activities 
before they are placed on the market”

6 See for example https://epochai.org/blog/tracking-large-scale-ai-models
7 See https://single-market-economy.ec.europa.eu/single-market/goods/new-legislative-framework_en

https://epochai.org/blog/tracking-large-scale-ai-models
https://single-market-economy.ec.europa.eu/single-market/goods/new-legislative-framework_en
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nical committee 21 (JTC21)8 is developing a set of standards for the high-risk requirements that are 
planned to be harmonized throughout the EU, which will come with a presumption of compliance to 
the AI Act. VDE and DKE (German Commission for Electrotechnical, Electronic, and Information Tech-
nologies of DIN and VDE) play a leading role in these efforts. In addition, the European Commission 
has recently started a process to develop a Code of Practice9 as guidance for the specific obligations 
to GPAI models, including LLMs, which involves a process including a large list of stakeholders from 
academia, industry and civil society.

A shortcoming of this approach to legislation is the currently limited transferability of the obligations 
themselves to concrete technical parameters without the guidance of additional standards or other 
frameworks, with harmonized standards not foreseen to be published before the end of 2025. For 
example, the transparency obligation outlined for high-risk AI systems in Chapter 2 of the AI Act con-
sidered separately, falls short in providing an adequate level of detail for practitioners to implement this 
obligation adequately, such that actual transparency can be provided to users with different levels of 
expertise, domain knowledge and backgrounds (Helberger and Diakopoulos, 2023). Another example 
would be the obligation of error-free and unbiased datasets for training high-risk AI systems, which 
cannot be achieved without detailing how to overcome the representative sample and bias tradeoff. 
Here, the challenge is to balance the need for a representative sample in training data (to capture di-
verse real-world scenarios) with the risk of introducing biases, as achieving full representativeness can 
inadvertently amplify certain biases or introduce new ones. Overall, because of the NLT approach, the 
obligations alone, as defined in the AI Act, lack concreteness, remain opaque and are not enough to 
guide developers in practical matters, especially with regard to GPAI models. Also, some AI process 
and lifecycle stages as well as some sectoral applications are not covered in any detail in the AI Act 
alone and additionally fall under different regulatory measures10. A second regulatory example for the 
challenges of policy making to keep pace with developments in LLMs is the DSA, which was crafted 
when LGAIMs were not present in the public discourse (Hacker et al., 2023). The new regulations 
for intermediaries (e.g., major social media platforms) set out the procedures for dealing with harmful 
content and disinformation shared on their platforms. The DSA, while comprehensive in regulating 
online platforms and content moderation, falls short in addressing the unique challenges posed by 
LGAIMs in disinformation generation. The DSA primarily targets platforms but does not directly reg-
ulate the AI models themselves, leaving gaps in managing the source of disinformation. LGAIMs can 
create content at massive scales and high sophistication, overwhelming current moderation systems. 
Furthermore, the DSA’s focus on reactive measures and algorithmic transparency is insufficient for 
proactively combating AI-generated disinformation. Coordination with AI-specific regulations like the AI 
Act is necessary to effectively address these emerging challenges.

8 See https://www.cencenelec.eu/areas-of-work/cen-cenelec-topics/artificial-intelligence/
9 See https://digital-strategy.ec.europa.eu/en/news/ai-act-participate-drawing-first-general-purpose-ai-code-practice
10 For example regarding the question of how to translate a research model later into a product, for medical products containing AI, 

which also fall under the medical devices regulation, or with regards to cybersecurity, where a high risk AI system may need to follow 
the Cyber Resilience Act as well.

https://www.cencenelec.eu/areas-of-work/cen-cenelec-topics/artificial-intelligence/
https://digital-strategy.ec.europa.eu/en/news/ai-act-participate-drawing-first-general-purpose-ai-code-practice
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6 Recommended Actions
AI technologies already permeate all areas of life and all sectors of the economy. After the ChatGPT 
moment in November 2022, AI has been leveraged across our society and many business areas. AI, 
especially generative AI (GenAI) based on large foundation models, will continue to have a profound 
impact on our society and economic ecosystems across all domains. Several professions and job 
profiles will change dramatically, and we are still at the beginning of this new technological era. It is 
essential that we dedicate our full attention and focus to AI in order to contribute its continued devel-
opment and integration into industry and academia, and to assume a leading role in this field. It also 
implies that political, technical and administrative organizations, users and the entire society should be 
aware of the forthcoming opportunities and changes driven by AI technologies. The following areas 
should be addressed to ensure that we achieve a maximum impact and high degree of technology 
sovereignty in this field:

• Resources for Research: AI and particularly future generations of LLMs require additional re-
search efforts, concerning both theoretical and practical aspects. The list of research topics is 
extensive, including factual correctness, reasoning abilities, removing bias, following ethical values, 
energy efficiency, memory consumption both in fine-tuning and inference, alternative model archi-
tectures beyond the transformer, data-efficient processing to avoid intellectual property issues and 
toxicity, multimodal approaches to combine different input channels (speech, audio, images, video, 
text, etc.), and multilingual approaches. These research activities are directed toward novel model 
architectures and even stronger large foundation models. To ensure the ability to perform signifi-
cant research work, it is necessary to establish the skills, infrastructure and research networks to 
train large foundation models from scratch and to democratize fine-tuning and inference towards 
smaller organizations and platforms. Additionally, many other research fields (e.g., social sciences, 
chemistry and biological sciences) will undergo a radical transformation as a result of the utilization 
of AI. For all upcoming research on AI or applying AI in research, substantial resources and skilled 
researchers are needed. This requires sustained public funding on both the German and Europe-
an level and improved access to venture capital for research-intensive startup companies. 

• Transfer of AI technologies: Germany is a world leader in many areas of science and technology, 
and its industry and research institutions are well positioned to capitalize on the current momen-
tum of AI developments. The full benefit of AI can be achieved through a trustful and broad transfer 
of AI research and innovative technologies into the industrial context and real-world applications. 
Therefore, existing solutions have to be enriched with AI functionalities, like chatbots, retrieval-aug-
mented generation (RAG) systems, machine translation, and upcoming agentic AI architectures. 
The adaptation (e.g., fine-tuning) and tailoring of large foundation models require sufficient access 
to scalable HPC infrastructure. For the successful transfer of AI technologies, access to AI models 
and the availability of skilled experts in this area are essential. Here we need strong transfer mech-
anisms on both the national and European level, including the definition of important projects of 
common European interest (IPCEI) in areas with advanced levels of technological readiness.

• Trustworthy AI, Ethical and Social Aspects: The enormous power of AI needs regulation to ensure 
the fair and ethical usage of this new technology. The European AI Act and standardization efforts 
(including activities of VDE, see Section 5) are important first steps to ensure the trustworthiness of 
AI in society. Developing techniques to identify and mitigate bias, create safe and secure models, 
ensuring transparency and accountability in AI systems, and promoting sustainable AI practices are 
crucial steps. Regulatory frameworks and industry standards must evolve rapidly to keep pace with 
these advancements, ensuring that the deployment of LLMs benefits society while minimizing risks. 
Here we are also at the beginning of a process that needs more effort and networked activities, 
for instance, in providing more concrete guidance in translating the vaguely defined obligations into 
technical parameters. VDE and other partners are already well positioned to push these activities 
further. Other societal and economic aspects have to be considered as well, like energy efficiency of 
large foundation models, or the transparency and acceptance of AI in our society.

In summary, AI requires a collaborative effort between research institutions, industry (SMEs and large 
companies alike) as well as the public sector, and government. The success of new AI technologies, 
including LLMs, will only be achieved if society is willing to support, use, finance and secure this new 
generation of technology. It offers an enormous opportunity to address upcoming societal challenges. 
It is therefore essential that we utilize it responsibly. Technology will be the basis of our society and 
economy more than ever.
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