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Coherent Free-space Optical Communication

Atmospheric turbulence

Beam wander
High-data rate (Towards 100Gb/s)

Have to process many samples in parallel
(~32-256)

Have to keep algorithms at low complexity

Space-environment

Question:
What impact does the dynamic channel have
on timing recovery algorithms?

Target scenario: Optical ground-to-GEO link
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Clock recovery

We have to constantly adjust the phase and
frequency of the receiver to match the
transmitter

Have to track clock drift during fades or be
able to recover after fades

0 100 200 300 400 500 600 700 800 900
Time [ms]

15

12

9

6

3

0

No
rm

al
ize

d 
Po

we
r [

dB
]

Example of power vector

ADC

Timing Error
Estimation

Low-pass 
Filter

VCO DAC

Typical timing recovery solution, the sampling frequency is of the ADC is controlled with a

voltage controlled oscillator (VCO).
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All-digital solutions

Let sampling clock be free-running and
compensate for sampling offset with digital
signal processing

Feedforward
Absolute phase is estimated
Instant aquistion
Higher complexity
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Timing Error Detectors (TED)

Target: 2x Oversampling, Roll-off β ≈ 0.3

TED Architecture Implementation
Gardner[1] Feedback Time Domain
Godard[2] Feedback FFT
Lee[3] Feedforward Spectral Component
GuCui[4] Feedback Spectral Component
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Spectrum of <(r (2n)(2n + 1)) + =(r (2n)r (2n + 1)) for roll-off β = 0.3, 0.03,

where r is the received signal
[1] Gardner,“A BPSK/QPSK Timing-Error Detector for Sampled Receivers”,1986
[2] Godard,“Passband Timing Recovery in an All-Digital Modem Receiver”,1978
[3] Lee,“A new non-data-aided feedforward symbol timing estimator using two samples per symbol”,2002
[4] Gu et al.,“All-Digital Timing Recovery for Free Space Optical Communication Signals With a Large Dynamic Range and Low OSNR”,2019
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Simulation setup

Continous
Simulation of continous link
Time consuming
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Quasi-static
Evaluate performance at different values of
SNR to map between SNR and BER
Fast evaluation
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Results

Simulation setup
Continous simulation of 1 second
for 25GBaud QPSK receiver

Strong turbulence ground-to-GEO
scenario: Fades down to -15 dB

Average BER ≈ 10−3

Clock offset: 100 ppm

First let’s look at the feedback
algorithms: Parallelization factor
p=128, Latency d=10 cycles
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Results

Latency of 10 cycles is probably
too optimistic.

Increasing the latency of the
feedback loop to 20 cycles
introduces a larger penalty.
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Results

The feedforward method (Lee)
performs worse due to poor
performance during deep fades
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Zoom on deep fade to show the difference between feedback and

feedforward algorithms
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Results

Higher degree of parallelism/block
size decreases tracking speed
performance but increases the
noise tolerance
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Results

Using the Quasi-static (QS)
method we get similar results
compared to the continous
simulation

One outlier: Godard p:256 d:20
sometimes converges to a local
optimum at low SNR
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Conclusion

Our simulations show that all-digital
feedback-based timing recovery is a good
solution for optical satellite links, if the
latency requirements can be fulfilled

Feedforward methods are sensitive to deep
fades and might therefore not be suitable
for optical satellite links

A quasi-static simulation approach can be
used to speed up simulations but might
underestimate the performance of edge
cases
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