

24. VDE ITG Fachtagung Photonische Netze

09.05.2023-10.05.2023, Leipzig

A Novel Optimization Algorithm for Resilient T-SDN Control-Plane Design in Optical Transport Networks

Shabnam Sultana, Ronald Romero Reyes, Khai Tuan Nguyen and Thomas Bauschert

Agenda

- Motivation / Problem Statement
- Definition of Network Scenario
- Formulation of Optimization Algorithm
 - □ Algorithm Description
 - Optimization of the Control Plane Traffic Routing

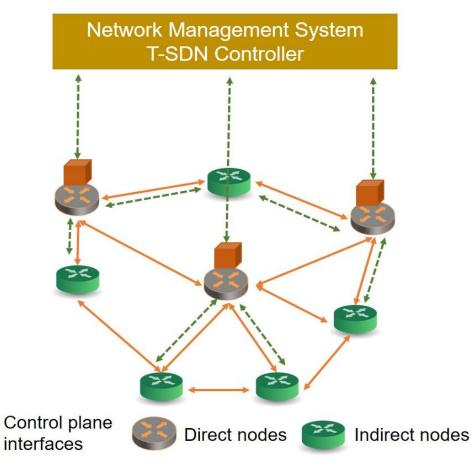
24. VDE ITG Fachtagung Photonische Netze

- Results and Analysis
 - ☐ Scalability of the Cost of the Control Network
- Conclusion & Future Work
- References

Motivation / Problem Statement

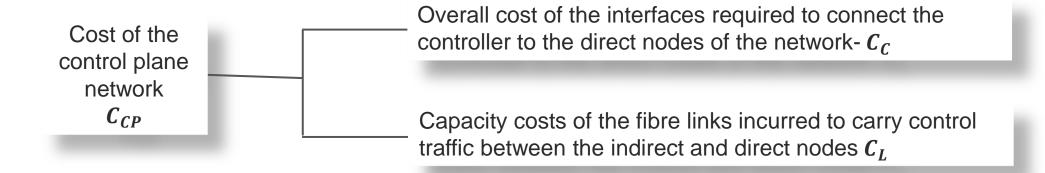
- With the uncoupled approach of network control using SDN, numerous studies propose optimization strategies to solve the Controller Placement Problem (CPP) in IP networks [1].
- However, the control plane design extends beyond the CPP problem and includes the interconnections between the data plane devices and the controllers.
- The control traffic is also often overlooked even for IP networks.
 - → Mainly due to the lack of approaches for control plane traffic modelling.
 - \rightarrow The study in [2] is one of the few rare studies that solves the CPP problem to minimize control traffic for OpenDaylight-based cluster of controllers.

Proposition:-


- Model the control traffic for optical networks [3] –that is derived from the characterization of the signalling procedures for lightpath setup and termination in a fully-disaggregated testbed with OpenROADM devices.
- Propose an algorithm that applies this traffic model for the design of the control plane in optical systems controlled by a monolithic controller.

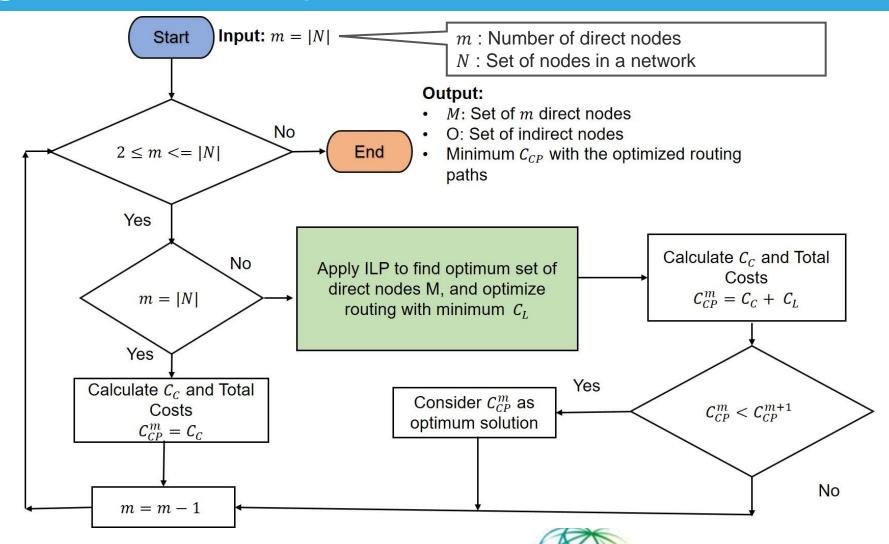
Definition of Network Scenario

- ➤ Given a network that consists of nodes e.g. ROADMs, fibre links, and a centralized controller, the nodes are connected via control plane interfaces to the controller.
- Control plane interfaces are installed only on a set of nodes, denoted as direct nodes.
- Remaining nodes utilize the fibre links, hence denoted as *indirect nodes*.
- Further consideration of in-fibre and out-of-band control network.
- > Challenges:-
 - 1. Determining the number and placement of control plane interfaces the definition of the *direct nodes*.
 - 2. Optimization of the routing of the control traffic between *indirect* and *direct* nodes.



Example optical transport network architecture with T-SDN controller

Formulation of optimization algorithm


- Objective: Minimize the cost of the control plane network.
- Considerations: Reliability constraints against single node and/or link failures.

Algorithm Description

Optimization of the Control Plane Traffic Routing

TABLE I
DEFINITION OF PARAMETERS AND SETS

minimize	$C_L = \sum_{e \in E} \xi_e$	$\sum_{n\in\mathbb{N}}\frac{h(n)}{\eta_n}$	$\sum_{p \in P(n)}$	$\delta_e^p \mu_p^n$
----------	------------------------------	--	---------------------	----------------------

subject to

C1:
$$\sum_{p \in P(n)} \mu_p^n = \eta_n (1 - x_n) \qquad , \quad \forall n \in \mathbb{N}$$

C2:
$$\sum_{p \in P(n \to \tilde{n})} \mu_p^n \le x_{\tilde{n}} , \forall n, \tilde{n} \in N;$$
$$n \ne \tilde{n}$$

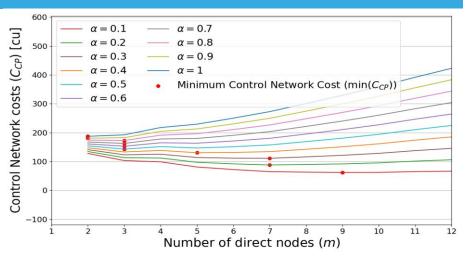
C3:
$$\sum_{p \in P(n)} \delta_e^p \mu_p^n \le 1 - x_n \qquad , \quad \forall n \in N; \\ e \in E$$

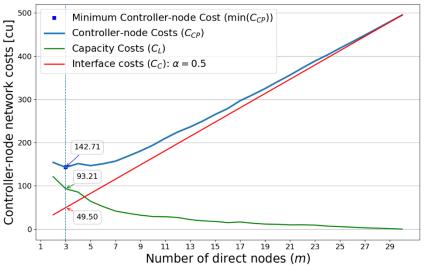
C4:
$$\sum_{n \in N} x_n \le m$$

Notation	Definition		
$n \in N$	Node n where N is the set of nodes		
$e \in E$	Fibre link e , where E is the set of fibre links		
$p \in P(n)$	Path p from the set of all feasible paths between node n and all direct nodes, $\forall n \in N$		
h(n)	Bandwidth of the control traffic flow between node n and the controller		
ξ_e	Unit capacity cost of link $e \in E$		
m	Number of direct nodes, where $2 \le m \le N $		
δ^p_e	Binary: 1 if path $p \in P(n)$ contains link e , 0 otherwise		
η_n	Positive integer: Diversity factor that defines the number of paths over which the flow $h(n)$ is split		

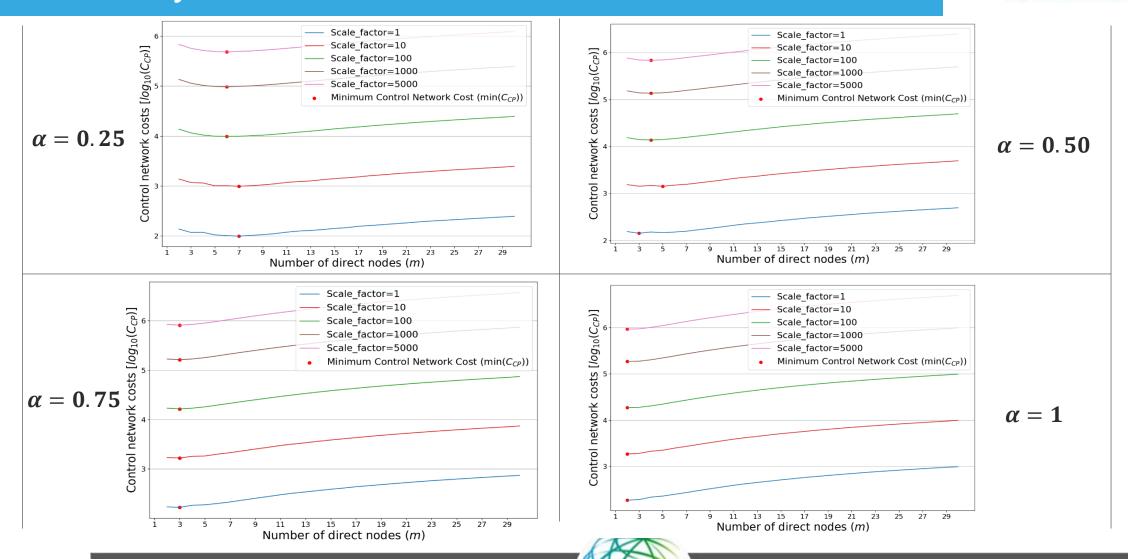
TABLE II DEFINITION OF DECISION VARIABLES

Notation	Definition	
μ_p^n	Binary: 1 if path $p \in P(n)$ is selected, 0 otherwise	
x_n	Binary: 1 if node $n \in N$ is a direct node, 0 otherwise	


Results and analysis w.r.t CORONET-30 network


24. VDE ITG Fachtagung Photonische Netze

Considerations:


- Use of traffic model in [3] for calculating h(n).
 - Arrival rate of approx. 0.17 optical connections per second at each node, and an average holding time of 600 seconds.
- Unit capacity cost of each fibre link: $\delta_e = 1$ cost units (cu).
- $C_C = \alpha \cdot \sum_{n \in N} h(n) \cdot m \cdot k$ cu
 - $> 0 < \alpha < 1$ represents the capability of the control interface to sustain the control traffic load from all nodes.
 - \triangleright k is the unit capacity cost, and is defined as k=1 cu
- DIVERSITY_FACTOR: $\eta_n = 2$.

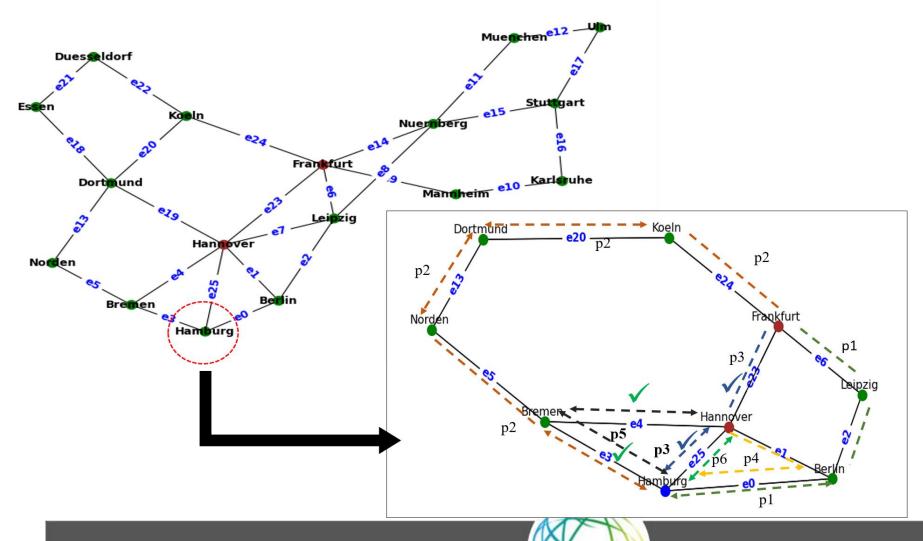
Scalability of the Cost of the Control Network

Conclusion

- This paper presents a novel optimization algorithm to determine an optimal control plane network design in the context of optical transport networks.
- The objective of this algorithm is to optimise the cost of the control network considering two
 types of costs- namely, link capacity costs (C_L) and interface costs (C_C).
- The algorithm solves the definition of the number and placement of control plane interfaces as well as the routing of control traffic.
- The study revealed the impact of C_L and C_C on the cost of the control network.
- The impact of factors such as the control traffic load and the capacity of the interfaces on the optimum solutions have been further evaluated.
- Extension of this algorithm to evaluate design of the control plane implementing distributed SDN control can be part of our future work.

References

- [1] A. Kumari and A. Sairam, "Controller placement problem in software-defined networking: A survey," Networks, vol. 78, pp. 195–223, 2021.
- [2] M. Karatisoglou, K. Choumas, and T. Korakis, "Controller placement for minimum control traffic in opendaylight clustering," in 2019 IEEE 2nd 5G World Forum (5GWF), pp. 353–358, 2019.
- [3] S. Sultana, R. R. Reyes, and T. Bauschert, "Control-plane traffic modelling for connection management in t-sdn optical networks using transport pce and openroadm," in Photonic Networks; 23th ITG-Symposium, pp. 1–9, 2022.



Thank You

Placement and Routing

