Wavelength-Selective Switch for Space-Division Multiplex Systems

Fraunhofer

Fraunhofer IOF

HOLOEYE
HOLOEYE Photonics

Steffen Trautmann

Jean-Christophe Olaya, Philip Engel, David Kirchner, Clément Abélard, Sarah Kilian

1 Introduction

Applications

3 Device setup
4 Summary

Introduction

Paths to increased capacity

Space division multiplexing

Requires in most cases new fibers

Single-fiber bidirectional system

Only short distances possible

Goal: Demonstration of feasibility of a low loss, compact and low cost wavelength selective switch for space division multiplexing applications

Main tasks:

- Optical architecture
- Spatial light modulator (SLM) with driver electronics
- System integration, control software and electronics

Transparent optical network

Transparent routing of wavelength and spatial channels

Liquid crystal on silicon

Control of the phase of light at each pixel produces beamsteering

Large number of pixels allow a near continuous addressing capability

Liquid crystal on silicon (LCoS): Dynamic control of center frequency and bandwidth

Applications

Simplified connection management

Single spatial path per connection

Connection always uses only one of the spatial paths

Single wavelength range per connection

 wavelength conversion

A connection uses a dedicated wavelength range in all parallel paths

Assigning fixed paths or wavelength ranges to a connection

Cross-connection modes

Switching of SDM superchannels:

- Parallel switching of a wavelength from all input fibers to output ports
- No cross-connection between SDM lanes

Switching of individual wavelengths:

- Switching between SDM lanes and ports

Device setup

Wavelength selective switch - first setup

Simplified first step:

Common routing of all 4 cores (lanes) of an SDM fiber

4 parallel planes of 2x4 wavelength selective switches

Suitable for parallel switching of SDM superchannels

Wavelength selective switch - objective

Final setup:

Full flexibility

8x16 wavelength

selective switch

- full C-band: 1529.5 nm - 1568 nm
- 12.5 GHz channel spacing
- polarization diversity
- each wavelength
- from each input fiber can be routed to
- each output fiber

Suitable for parallel switching of WDM and SDM superchannels

Control of the LCoS

Calculate and command the necessary movements

	Gray scale of LCoS pixel
\mathbf{U}	Generation of bit seq.
Q	average phase of pixel ave due to slow reaction

> Low-level control of pixels on LCoS matrix

Control split between microcontroller and FPGA

Signal flow in FPGA

FPGA converts HDMI input into drive signals for SLM

Pulse code modulation

Changing polarity of drive signal gives better chemical stability and avoids drift

Pulse code modulation used to control gray scale value of an LCoS pixel

SLM demonstrator

Double cell for polarization management

2 times 2048×2048 pixels $6.4 \mu \mathrm{~m}$ pixel size

Design of the 8×16 WSS

Design of spatial light modulator

Current tasks: Design of optical path and spatial light modulator

Performance data

Diffraction efficiency (16-Pixel blazed grating):

- Up to 88% in the 1 st order
- Max 1,7\% in the Oth order

Summary

Summary

Report on the development of a wavelength-selective switch that enables switching of wavelength channels

- from multiple input ports
- to mulltiple output ports with the
- option of changing the spatial channel (e.g. fiber core)

Module will support the switching of spatial and wavelength super-channels as well as a combination thereof.

Thank you for your attention

Irapp@adva.com

