

Multi-Connectivity in 6G Mobile Networks by Space Division Multiplexing in Combination with Radio over Fiber

Peter M. Krummrich, Majdi. F. A. Hammouri

Outline

- Introduction, motivation
- Data rate scaling rules
- Capacity increase by space division multiplexing
- Radio over fiber with optical MIMO
- Proof of concept simulation results
- Summary and conclusions

Introduction

Evolution of the maximum data rate with mobile network generation and deployed carrier frequency ranges

Mobile network generation	Maximum data rate	Carrier frequency ranges
2G / GSM	256 kbit/s	0.9 … 1.0 GHz, 1.7 … 1.9 GHz
3G / UMTS	42 Mbit/s	1.9 2.2 GHz
4G / LTE	1 Gbit/s	0.8 … 0.9 GHz, 2.5 … 2.7 GHz
5G	10 Gbit/s	0.7 0.8 GHz, 3.4 3.8 GHz
6G	400 Gbit/s	tbd

Increasing the data rate

Shannon capacity limit

Chair for HFT High Frequency Technology

Symbol rate and bandwidth

Assum	ption: 10 bit per	symbol
Data rate	Symbol rate	Bandwidth
100 Mbit/s	10 MBaud	10 MHz
1 Gbit/s	100 MBaud	100 MHz
10 Gbit/s	1 GBaud	1 GHz
100 Gbit/s	10 GBaud	10 GHz

Bandwidth and carrier frequency

Impedance matching and low loss power splitting can only be realized in a narrow frequency range

The carrier frequency has to be higher than the bandwidth by a factor 5 ... 10

Symbol rate and bandwidth

Assum	ption: 10 bit per	symbol	
Data rate	Symbol rate	Bandwidth	Carrier frequency
100 Mbit/s	10 MBaud	10 MHz	100 MHz
1 Gbit/s	100 MBaud	100 MHz	1 GHz
10 Gbit/s	1 GBaud	1 GHz	10 GHz
100 Gbit/s	10 GBaud	10 GHz	100 GHz

P. Krummrich | ITG FT PN 2023 | 09.05.2023

Received power

Bandwidth and signal to noise ratio

Doubling the bandwidth requires doubling the signal power to keep the signal to noise ratio constant

Scaling example – link power budget

Data rate	1 Gbit/s	100 Gbit/s	100
Number of bits per symbol	10	10	1
Bandwidth	100 MHz	10 GHz	100
Carrier frequency	3 GHz		100
Effective area (same antenna type)	A _{eff}	A _{eff} / 10,000	1 / 10,000
Received power (same antenna type)	P_R	→ P _R / 10,000	1 / 10,000
Constant SNR	P_R	→ <i>P_R x 100</i>	100

Factor

Coping with received power

Scaling example

Factor

Data rate	1 Gbit/s	100 Gbit/s	100
Number of bits per symbol	10	10	1
Bandwidth	100 MHz	→ 10 GHz	100
Carrier frequency	3 GHz	→ 300 GHz	100
Effective area (same antenna type)	A_{eff}	→ A _{eff} / 10,000	1 / 10,000
Received power (same antenna type)	P_R	→ P _R / 10,000	1 / 10,000
Constant SNR	P_R	\longrightarrow $P_R \times 100$	100
Cell radius	500 m	──→ 0.5 m	1 / 1,000

High Frequency Technology

Scaling example			
			Factor
Data rate	1 Gbit/s	100 Gbit/s	100
Number of bits per symbol	10	10	1
Bandwidth	100 MHz		100
Carrier frequency	3 GHz		100
Effective area (same antenna type)	A_{eff}	→ A _{eff} / 10,000	1 / 10,000
Received power (same antenna type)	P_R	→ P _R / 10,000	1 / 10,000
Constant SNR	P_R	→ <i>P_R x 100</i>	100
Cell radius	500 m	→ 50 m	1 / 10
Antenna gain	2	20,000	10,000

Antenna gain and directivity

Capacity increase by SDM with RoF

Serving multiple users by superposition of signals

P. Krummrich | ITG FT PN 2023 | 09.05.2023

Chair for HFT High Frequency Technology

Signal generation by optical MIMO

Set-up for proof of concept simulations

Generic antenna configuration: array with eight $\lambda/2$ dipoles

Signals for user 1 and user 2

Normalized signal power density of signal 2

Normalized signal power density of signal 1

Chair for HFT High Frequency Technology

SNR for user 1

Chair for HFT High Frequency Technology

SNR for user 2

Summary and conclusions

- Mobile networks with data rates > 100 Gbit/s need carrier frequencies > 100 GHz
- Viable link budgets can only be realized with antennas with high gain / directivity
- The high directivity can be leveraged to increase capacity by space division multiplexing
- We have proposed an energy efficient optical MIMO implementation in combination with radio over fiber
- Proof of concept simulation results demonstrate the feasibility of the concept

This work has been partly funded by the Federal Ministry of Education and Research (BMBF) via the project 6GEM (funding reference 16KISK038).