

Analytical Approach to Account for ISRS when Planning Ultra-Wideband DWDM Optical Networks

Dmitry Khomchenko, André Richter

May-09, 2023

We empower you to define the cutting edge.

Outline

- ✓ ISRS in Multi-band WDM Systems
- Analytical Approach to ISRS Modeling
- ✓ Investigated Use-cases
- ✓ Summary

We empower you to define the cutting edge.

ISRS in Multi-band WDM Systems

Inter-channel Stimulated Raman Scattering

Accounting for ISRS at Network Planning

Inter-Channel Stimulated Raman Scattering

- Power transfer due to Raman effect
 - Intra-band in DWDM signal
 - Inter-band in multi-band DWDM signal
- GNLS describes propagation of DWDM signal along a fiber*
- Numerical simulations
 - Accurate
 - Time-consuming

* A. Richter, G. Di Rosa and I. Koltchanov, "Challenges in Modeling Wideband Transmission Systems," in 2022 European Conference on Optical Communication (ECOC), December 2022.

ISRS in Multi-band WDM Systems

- Simplified propagation equations describing interchannel power transfer*
- Numerical calculations for a single 100 km span
 - ~0.5 dB tilt in output power of DWDM signal in C-band
 - up to 10 dB tilt when S, C, and L-bands are in use

TILT VALUE FOR DIFFERENT SPECTRAL UTILIZATION

Tilt (dB)					
С	C + L	S + C	S + L	S + C + L	
0.9	3.5	4.5	7.1	10.1	

The effect is accumulated over several spans!

* S. Cani et al., "An Analytical Approximated Solution for the Gain of Broadband Raman Amplifiers With Multiple Counter-Pumps," Journal of Lightwave Technology, vol. 27, no. 7, pp. 944 - 951, October 2009.

ISRS in multi-band WDM Systems

Inter-channel Stimulated Raman Scattering Accounting for ISRS at Network Planning

Accounting for ISRS at Network Planning

- Solve propagation equations* numerically
 - Good to estimate quality of signal for a given transmission line (TL)
 - Time-consuming not efficient at network planning
- Define effective attenuation coefficient

 $\alpha_{eff}^{num} = \ln[P(0)/P(L)]L$

- P(0) per channel power at the fiber input
- P(L) per channel power at the fiber output
- *L* fiber length

• Estimate quality of TL via
$$\alpha_{eff}^{num}$$
: $P(L) = P(0)e^{-\alpha_{eff}^{num}L}$

 α_k : fiber attenuation coefficient at frequency f_k and α_{eff}^{num} for different spectral utilization (0 dBm/channel @ fiber input, 100 km span)

^{*} S. Cani et al., "An Analytical Approximated Solution for the Gain of Broadband Raman Amplifiers With Multiple Counter-Pumps," Journal of Lightwave Technology, vol. 27, no. 7, pp. 944 - 951, October 2009. ITG 2023 - Copyright VPIphotonics

Effective Attenuation Coefficient

- α_{eff}^{num} depends on many parameters
 - DWDM signal parameters
 - Per channel power
 - o Channel frequencies and spacing

 α_k : fiber attenuation coefficient at frequency f_k and α_{eff}^{num} for different spectral utilization (0 dBm/channel @ fiber input, 100 km span)

Effective Attenuation Coefficient

- α_{eff}^{num} depends on many parameters
 - DWDM signal parameters
 - Per channel power
 - Channel frequencies and spacing
 - Fiber type and length
- Look-up table clumsy approach
- Can α_{eff} be calculated analytically?

Analytical Approach to ISRS modeling

Propagation Equations

Iterative Approximation to Analytical Solution

Propagation Equations

Equations accounting for stimulated and spontaneous Raman scattering*

- Signal-to-Signal interaction only**
 - No spontaneous scattering
 - No Signal-to-Noise interaction

$$\frac{dP_{\nu}^{\pm}}{dz} = \mp \alpha_{\nu} P_{\nu}^{\pm} \pm P_{\nu}^{\pm} \sum_{\mu > \nu} \frac{C_{R,\mu\nu}}{\Gamma} \cdot \left(P_{\mu}^{+} + P_{\mu}^{-}\right)$$
$$\mp P_{\nu}^{\pm} \sum_{\mu < \nu} \frac{\nu}{\mu} \frac{C_{R,\mu\nu}}{\Gamma} \cdot \left(P_{\mu}^{+} + P_{\mu}^{-}\right)$$

$$-\pm 2N_{E,\nu} \sum_{\mu > \nu} \frac{C_{R,\mu\nu}}{\Gamma} \cdot \left(P_{\mu}^{+} + P_{\mu}^{-}\right) \cdot T_{N}$$

$$-\mp P_{\nu}^{\pm} \sum_{\mu < \nu} \frac{\nu}{\mu} \frac{C_{R,\mu\nu}}{\Gamma} 4N_{E,\mu} \cdot T_N$$

** Justification is given later

* S. Cani et al., "An Analytical Approximated Solution for the Gain of Broadband Raman Amplifiers With Multiple Counter-Pumps," Journal of Lightwave Technology, vol. 27, no. 7, pp. 944 - 951, October 2009.

Propagation Equations

- Equations accounting for stimulated Raman Scattering
- Copropagating only

$$\frac{dP_k(z)}{dz} = -\alpha_k P_k(z) + P_k(z) \sum_{i \neq k} g_{ik} P_i(z)$$
 (1)

$$\frac{dP_{\nu}^{\pm}}{dz} = \mp \alpha_{\nu} P_{\nu}^{\pm} \pm P_{\nu}^{\pm} \sum_{\mu > \nu} \frac{C_{R,\mu\nu}}{\Gamma} \cdot \left(P_{\mu}^{+} + P_{\mu}^{-}\right)$$
$$\mp P_{\nu}^{\pm} \sum_{\mu < \nu} \frac{\nu}{\mu} \frac{C_{R,\mu\nu}}{\Gamma} \cdot \left(P_{\mu}^{+} + P_{\mu}^{-}\right)$$

where

$$g_{ik} = \begin{cases} -\frac{f_i}{f_k} \frac{C_{ik}}{\Gamma}, f_i < f_k \\ \frac{C_{ik}}{\Gamma}, f_i > f_k \end{cases}$$

 $P_k(z)$ — power of DWDM channel at frequency f_k α_k — fiber attenuation coefficient C_{ik} — Raman gain efficiency Γ — polarization factor

- Numerical calculations
- Analytics ?

Analytical Approach to ISRS modeling

Propagation Equations Iterative Approximation to Analytical Solution

Iterative Approximation to Analytical Solution

Signal-to-Signal interaction is negligible zero order approximation

$$\frac{dP_k(z)}{dz} = -\alpha_k P_k(z) + \frac{P_k(z)}{\sum_{i \neq k} g_{ik} P_i(z)} (1) \implies P_k^{(0)}(z) = P_k(0) e^{-\alpha_k z} (2)$$

• First order approximation, after substituting (2) into the right side of (1)

$$P_k^{(1)}(z) = P_k(0)e^{-\alpha_k z} \exp\left[\sum_{i \neq k} g_{ik} P_i(0) \frac{1 - e^{-\alpha_i z}}{\alpha_i}\right] \qquad \text{Correction due to}$$
interfering channels

• Effective attenuation coefficient in the 1st approximation

$$\alpha_{k}^{eff(1)} = \alpha_{k} + \sum_{i \neq k} A_{ik} \frac{L_{i}^{eff}}{L} , \qquad A_{ik} = -g_{ik} P_{i}(0)$$

$$L_{i}^{eff} = (1 - e^{-\alpha_{i}L})/\alpha_{i}$$
(3)

/Piphotonics Numerical Calculations vs. 1st order Approximation

- Zero order approximation
 - Applicable to short fiber spans or to a few channels
- First order approximation
 - Applicable for a single band or adjacent bands, short spans, or quite low input power

• The higher the fiber length or spectral utilization, the higher the discrepancy with numerical calculations!

Improving Analytical Solution

(4)

Second order approximation, after substituting (3) into the right side of (1)

$$\alpha_k^{eff(2)} = \alpha_k + \underbrace{\sum_{i \neq k} A_{ik} \frac{L_i^{eff^*}}{L}}_{i \neq k}, \qquad L_i^{eff^*} = \frac{1 - exp\left[\sum_{j \neq i} A_{ji} L_j^{eff}\right]}{\sum_{j \neq i} A_{ji}}$$

$$P_k^{(2)}(L) = P_k(0)e^{-\alpha_k^{eff(2)}L}$$

 $\begin{array}{c} 0.14 \\ (\widehat{\mathbf{P}}) \\ (\widehat{\mathbf{P}) \\ (\widehat{\mathbf{P}}) \\ (\widehat{\mathbf{P}) \\ (\widehat{\mathbf{P}}) \\ (\widehat{\mathbf{$

Power difference vs. λ @ fiber output (0 dBm/channel @ fiber input)

Assumption:

• $\alpha_i = \alpha_j$, i.e., fiber attenuation coefficients for interfering channels are identical

Investigated Use-cases

1 x 100 km Transmission Line 6 x 100 km Transmission line 9 span Transmission Line from 17 node network

Validation of Simplified Propagation Equations

- Propagation equations without signal-to-noise interaction, because
 - ISRS tilt is high when wide spectral range is in use
 - Output DWDM signal needs equalizing
 - Extra loss due to equalization
 - Raman noise negligible, compared to preamplifier ASE

 Numerical solution extended to account for Raman noise and its amplification gives
 < 0.01 dB difference in OSNR values.

$$\frac{dP_k(z)}{dz} = -\alpha_k P_k(z) + P_k(z) \sum_{i \neq k} g_{ik} P_i(z)$$

$$\frac{dP_{\nu}^{\pm}}{dz} = \mp \alpha_{\nu} P_{\nu}^{\pm} \pm P_{\nu}^{\pm} \sum_{\mu > \nu} \frac{C_{R,\mu\nu}}{\Gamma} \cdot \left(P_{\mu}^{+} + P_{\mu}^{-}\right)$$

$$\mp P_{\nu}^{\pm} \sum_{\mu < \nu} \frac{\nu}{\mu} \frac{C_{R,\mu\nu}}{\Gamma} \cdot \left(P_{\mu}^{+} + P_{\mu}^{-}\right)$$

$$\pm 2N_{E,\nu} \sum_{\mu > \nu} \frac{C_{R,\mu\nu}}{\Gamma} \cdot \left(P_{\mu}^{+} + P_{\mu}^{-}\right) \cdot T_{N}$$

$$\mp P_{\nu}^{\pm} \sum_{\mu < \nu} \frac{\nu}{\mu} \frac{C_{R,\mu\nu}}{\Gamma} 4N_{E,\mu} \cdot T_N$$

Single span transmission line

- The difference in dB between per channel power @ fiber output calculated numerically and via α^{eff(2)}_k
 - < 0.05 dB when C and L bands are in use
 - < 0.3 dB when S, C, and L bands are in use
 - Underestimation of channel power at blue side of S-band (0.15 dB)
 - Overestimation of channel power at red side of L-band (0.3 dB)

MAXIMAL ERROR FOR DIFFERENT SPECTRAL UTILIZATION

Approx.	$P_k(L) - P_k^{(1,2)}(L) $ (dB)				
No.	C + L	S + C	S + L	S + C + L	
1	-0.1	-0.2	-0.9	-1.2	
2	0.05	-0.15	-0.3	-0.3	

0 dBm / channel @ fiber input

• The accuracy is lower at higher spectral utilization due to the assumption about equal attenuation of interfering channels.

Single span transmission line

- Different power levels at fiber input with S, C, and L bands in use
 - Same per channel power
 - Per channel power varies in range [-3;3] dBm
 - Maximal error

MAXIMAL ERROR WITH S, C, AND L BANDS IN USE

Input per Channel Power (dBm)	-3	0	1	3
$P_k(L)$ - $P_k^{(2)}(L)$ (dB)	-0.15	-0.3	-0.6	5

- Non-flat input signal
 - Lower powers at lower frequencies and higher powers at higher frequencies, i.e., "inverse" ISRS tilt
 - Power range at lower frequencies is [-10;-3] dBm
 - Power range at higher frequencies is [-3;3] dBm
 - o Maximal error is below 0.5 dB

Simulation Results

1 x 100 km Transmission Line 6 x 100 km Transmission line 9 span Transmission Line from 17 node network

Six Span Transmission Line

- Propagation of multi-band DWDM signal along 600 km transmission line
 - Different combinations of fully loaded frequency bands
 - Accumulated tilt is higher after several spans
 - Power equalization
 - Exact compensation of fiber and equalization losses after each span
 - o 0 dBm channel power at the input of each span
 - o 5 dB amplifier noise figure

Six Span Transmission Line

- Propagation of multi-band DWDM signal along 600 km transmission line
 - Different combinations of fully loaded frequency bands
 - Accumulated tilt is higher after several spans
 - Power equalization
 - Exact compensation of fiber and equalization losses after each span
 - o 0 dBm channel power at the input of each span
 - o 5 dB amplifier noise figure
- Significant difference between zero approx. and numerical calculations
- Reduced cumulative error $(OSNR^{(n)} OSNR^{(2)})$
 - 0.1dB C and L bands are in use
 - 0.6dB S,C, and L bands are in use

OSNR DIFFERENCE

	$OSNR^{(0)} - OSNR^{(n)}$ (dB)			
Distance (km)	C + L	S + C	S + L	S + C + L
1x100	1.9	2.1	3.9	5.7
2x100	1.9	2.1	3.9	5.7
6x100	1.9	2.1	3.9	5.6

Simulation Results

1 x 100 km Transmission Line 6 x 100 km Transmission line 9 span Transmission Line from 17 node network

9 Span Transmission Line

- Transmission line from Nobel Germany Network* with 17 add/drop nodes
- Traffic matrix corresponds to 2030 year planning period**
- The shortest route between Berlin & Cologne
 - Four add/drop nodes
 - 6 repeater huts
 - 9 fiber spans of different lengths
- Exact loss compensation at add/drop nodes and repeater huts
- Equalization at add/drop nodes only
- * Zuse Institute Berlin, "SNDLib". [Online]. Available: sndlib.zib.de. Accessed: 2023-05-05.

** D.Khomchenko; S.K. Patri; A. Autenrieth; C. Mas-Machuca; A. Richter, "Transmission-Aware Bandwidth Variable Transceiver

Allocation in DWDM Optical Networks," in 2021 International conference on Optical Network Design and Modeling (ONDM), July 2021.

ITG 2023 - Copyright VPIphotonics

9 Span Transmission Line

- Transmission line from Nobel Germany Network* with 17 add/drop nodes
- OSNR overestimation (if ISRS is ignored)
 - < 1 dB for actual traffic matrix
 - < 2 dB for full loading

* Zuse Institute Berlin, "SNDLib". [Online]. Available: sndlib.zib.de. Accessed: 2023-05-05.

ITG 2023 - Copyright VPIphotonics

Summary

- Analytic approach to ISRS modeling has been presented
 - Quick assessment of cross-channel interference when planning ultra-wideband DWDM optical networks
 - Applicable to different configurations, including
 - Fiber spans of different lengths
 - Different bitrates, modulation formats and power levels at each lightpath
 - Analytical approach provides sufficiently accurate results for reasonable channel input powers

Thank you for your attention!

Questions?

Comments?

We empower you to define the cutting edge.