Learning to Exploit *z*-Spatial Diversity for Coherent Nonlinear Optical Fiber Communication

Sebastian Jung

Institute of Telecommunications, University of Stuttgart

ITG photonics conference May 9th, 2023

University of Stuttgart

Institute of Telecommunications Prof. Dr. Ing. Stephan ten Brink

Outline

Motivation

Proof of concept

Setup

A Results

G Conclusion & Outlook

Institute of Telecommunications

Agenda

Motivation

Proof of concept

Setup

4 Results

G Conclusion & Outlook

Sebastian Jung

Problems

- Kerr-effect causes spectral broadening
- Part of the information gets lost due to bandwidth limitation of $\mathsf{D}/\mathsf{A}\text{-}$ and $\mathsf{A}/\mathsf{D}\text{-}\mathsf{converters}$
- WDM requires hard bandwidth limits per channel

Solitonic propagation

- Nonlinear regime allows propagation of solitons
- Higher-order solitons posses spatial periodicity
- Spectrally inefficient for communications
- Given enough distance all impulses have solitonic behavior

Can we exploit this?

Solitonic propagation

- Nonlinear regime allows propagation of solitons
- Higher-order solitons posses spatial periodicity
- Spectrally inefficient for communications
- Given enough distance all impulses have solitonic behavior

Can we exploit this?

Solitonic propagation

- Nonlinear regime allows propagation of solitons
- Higher-order solitons posses spatial periodicity
- Spectrally inefficient for communications
- Given enough distance all impulses have solitonic behavior

Can we exploit this?

Spatial Diversity

- Ideal distributed Raman amplification
- Concatenate a second fiber
- Length of first fiber $\approx 1000\,\rm km$
- Split signal using a 3dB-coupler

Institute of Telecommunications

Agenda

Motivation

Proof of concept

Setup

4 Results

G Conclusion & Outlook

Sebastian Jung

Sending solitons

Results

Institute of Telecommunications

Results

- Combining both paths achieves gains
- Maximum achieved at $\frac{z_p}{2}$
- ⇒ Spatial diversity provides gains in solitonic communication

Institute of Telecommunications

Agenda

Motivation

Proof of concept

Setup

4 Results

6 Conclusion & Outlook

Sebastian Jung

Transmitter

Receiver

Institute of Telecommunications

Transmitter

Transmitter

Transmitter

Sebastian Jung

Learning to exploit z-Spatial Diversity

May 9th, 2023

Institute of Telecommunications

Agenda

Motivation

Proof of concept

Setup

A Results

6 Conclusion & Outlook

Sebastian Jung

Learning to exploit z-Spatial Diversity

May 9th, 2023

$$P_{\rm avg} = 5 \, \rm dBm$$

^[1]SD: Spatial diversity w.o. EDFA

^[2]SDA: Spatial diversity w. EDFA

Sebastian Jung

$$P_{\rm avg} = 5 \, \rm dBm$$

^[1]SD: Spatial diversity w.o. EDFA

^[2]SDA: Spatial diversity w. EDFA

Sebastian Jung

$$P_{\rm avg} = 5 \, \rm dBm$$

^[1]SD: Spatial diversity w.o. EDFA

^[2]SDA: Spatial diversity w. EDFA

Sebastian Jung

^[1]SD: Spatial diversity w.o. EDFA

^[2]SDA: Spatial diversity w. EDFA

Sebastian Jung

13/19

Spatial diversity results using learned transceiver

14/19

Sebastian Jung

Spatial diversity results using learned transceiver OSNR in dB 40 42 44 46 48 bit s·Hz Unattainable region 8 .⊆ Spectral efficiency η 6 bit 4 Split DBP CDC 2 SDA System AEPC AEC 0 -4Average launch power P_{avg} in dBm

Sebastian Jung

Learning to exploit z-Spatial Diversity

May 9th, 2023

14/19

Institute of Telecommunications

Agenda

Motivation

Proof of concept

Setup

A Results

6 Conclusion & Outlook

Sebastian Jung

Learning to exploit z-Spatial Diversity

May 9th, 2023

Conclusions

- Spatial diversity provides significant gains around $0.5 \frac{\text{bit}}{\text{s} \cdot \text{Hz}}$
- Input power influences optimal length ℓ_2
- Even non-ideal lengths of $\ell_2\approx 20\,km$ provide gains
- + Combine with WDM
- + Use different fiber

Thank you for your attention!

References

[Freire et al., 2021] Freire, P. J., Neskornuik, V., Napoli, A., Spinnler, B., Costa, N., Khanna, G., Riccardi, E., Prilepsky, J. E., and Turitsyn, S. K. (2021). Complex-valued neural network design for mitigation of signal distortions in optical links. *Journal of Liphrwave Technology*, 39(6):1669–1705.

[Kramer et al., 2015] Kramer, G., Yousefi, M. I., and Kschischang, F. R. (2015). Upper bound on the capacity of a cascade of nonlinear and noisy channels. In 2015 IEEE Information Theory Workshop (ITW), page 1–4.

Compensation/Predistortion [Freire et al., 2021]

