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Motivation

» Progress in quantum computing challenges the conventional cryptography

Why QKD?
= Information-theoretical security
Challenges:
= No quantum repeaters available = limited reach
= How to realize meshed long-haul networks?
= How to control the network/which information should be shared?

= Limited keyrates

» Based on which rules should the routing take place?
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Meshed QKD-Networks Cl AU

» How to realize a QKD network in a German topology?

NOBEL-Germany

= Nobel-Germany topology
- Extended with trusted nodes
Trusted Nodes (green):
= Necessary due to reach limitations of QKD-devices
= Must be secured properly
= Placed equidistantly on the links
Secret Keys:
= Limited keyrate
—> Precious resource

= One key to encrypt one GByte of data

K@YStOreS: @ Access Nodes

(o~

"«Chair of Communications 4 Tim Johann

@ Trusted Nodes

= One substore per link




Routing Challenges

Challenges:

= Avoid keystores running empty
» What are the possibilities to route using limited information only?
=  Simple hop-count based algorithm (Dijkstra)

= Include prediction of future key demands

» Past demand matrices can be used to predict the future data
traffic Traffic Trend of a Link

—— Data traffic
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= Information can be used to optimize weight of network edges
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= Machine Learning is used for prediction
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Traffic Prediction
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» Using prediction to proactively adapt edge weights
Execute Dijkstra based on these weights
- Leads to more balanced usage of network and avoids keystores to run empty
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Simulation Fundamentals C|IAIU

= Dynamic traffic data: 24 hours - 5 minute intervals > 288 demand matrices - 73,512 demands
= Routing optimization based on (hypothetical) perfect prediction of demand matrices

= LSTM prediction of demand matrices based optimized routing algorithm

= One request per second

= Constant key generation

= Filled keystores (100,000 keys for each link)
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LSTM for Prediction

LSTM
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= Three historic matrices as input

= One-step ahead prediction
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Legend:

X; = input

C..; = cell state
h..; = hidden state
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Traffic Prediction Quality

Deviation between predictions and true values:

= Traffic matrices dominated by low volume demands

Traffic Volume in GByte

300

250 A

N
o
o

Predictions [GByte]

50 A

0 50 100 150 200 250 300
True Values [GByte]

[

vchair of Communications

9 Tim Johann



Investigation of Blocking Probability

» Increasing traffic factor for scaling of demands

Main goal: Reduction of blocking probability

= Significantly better performance of prediction-based
algorithms (up to 4 percentage points)

= Higher traffic load factor - higher deviation
between LSTM and perfect prediction
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Investigation of Keystore Filling Level

» Exemplary visualization of the keystore filling level for a traffic factor of 1000
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= No overloading
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Keystore Filling Level: Link between Hannover and Bremen
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Investigation of Mean Keystore Level

» Frankfurt is one of the most heavily used nodes in the network NOBEL-Germany
T e
Results for a traffic factor of 1000: 1 Bi/'\:\:“:\/.
= LSTM prediction enables more evenly distributed utilization ,«j‘ /j‘ *-1 ’%}’/
= Higher variance for the Baseline due hop-based approach Fw{:: ;’
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!
o
@ Access Nodes
@ Trusted Nodes

2 100
= Baseline
q>) 80 EE Perfect prediction
GJ . .
it 60 - . . Il [STM prediction
g
g . 0 i _ . bl
Q
g il il il il il il il
20
c
©
g o | _ d
anove o O gne VS Jonne™® (e L S art oy
X0 3\ X0 0 X X0
U s n fu! A U fu!
Fral fra Fra Fran¥ pran¥ Fral prank
Edges

C.

_vchair of Communications 12 Tim Johann



Conclusion

= Keystores running empty can be avoided by traffic prediction

= |LSTM prediction performs better than hop-based routing
- Blocking probability is reduced by up to 4 percentage points

- Traffic load is distributed more evenly

= No sensitive information required
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