Grooming Connectivity Intents in IP-Optical Networks Using Directed Acyclic Graphs

ITG Photonic Networks 2023 - Liepzig

Filippos Christou, Andreas Kirstädter filippos.christou@ikr.uni-stuttgart.de, andreas.kirstaedter@ikr.uni-stuttgart.de May 9, 2023

Universität Stuttgart Institute of Communication Networks and Computer Engineering (IKR) Prof. Dr.-Ing. Andreas Kirstädter

Contents

- Introduction to Intent-Based Networking (IBN)
- Intent Trees
- Intent Directed Acyclic Graphs (DAGs)
- Grooming-enabled RMSA intent compilation
- Evaluation
- Summary

Introduction to IBN

Intent-Based Networking (IBN) introduces an extra abstraction layer between the network and the network operator.

IBN does not ask HOW but WHAT

IBN decouples the objective from the implementation.

Why IBN ?

- · Reduce expertise requirements
- Reduce human errors
- · Easy and fast business plan adaption
- Machine to machine communication; towards autonomous multi-domain networks
 - higher flexibility
 - compliance with end-to-end QoS requirements
 - accountability
 - confidentiality

This work focuses on providing the suitable intent infastructure to enable these benefits

Introduction to IBN - the architecture

Intent Trees

Intent tree is a hierarchical representation of an intent implementation after compilation

- · root intent is the original user intent
- · child intents are system-generated
- · low level intents are device-level intents
- · each intent in the tree has a state

Intent DAGs

In intent tree structures, intent nodes can only have one parent

→ intent trees do not support grooming

Intent Directed Acyclic Graphs (DAGs)

Intent definitions

In order to solve the Routing, Modulation and Spectrum Assignment (RMSA) problem we define the following intents:

- · LightpathIntent: defines a lightpath
- SpectrumIntent: defines a lightpath with spectrum allocation
- NodeRouterPortIntent: allocates an IP router port
- NodeTransmoduleIntent: allocates a transmission module
- · NodeSpectrumIntent: allocates spectrum slots in the fiber

Grooming example

A new connectivity intent is issued.

The new intent will be groomed together with the previous one.

A grooming RMSA algorithm using intent DAGs

The intent DAG is generated from an intent during compilation using an RMSA algorithm All RMSA algorithm can be translated to an intent-based approach using this design We adapt a greedy advanced Joint Multi-Layer (JML) heuristic [1]

Original design - JML

- 1. Build a multilayer graph with vector attributtes in each edge
- 2. Find candidate paths using a greedy algorithm
- 3. Choose single path that minimizes cost function

Adapted design - JML

- 4. Break solution path to predefined intents
- 5. Attach intents to the intent DAG

Further tuning - LDJM

The adapted algorithm JML remains easy to modify as designed by the original authors We tuned the cost function to get a Latency-Driven JML (LDJML) variation *(legacy cost function was minimizing costs)*

© 2023 Universität Stuttgart • IKR

ITG Photonic Networks 2023

^[1] Gkamas, Vasileios, Konstantinos Christodoulopoulos and Emmanouel Varvarigos. "A Joint Multi-Layer Planning Algorithm for IP Over Flexible Optical Networks." Journal of Lightwave Technology 33 (2015): 2965-2977.

Evaluation

Proof of concept evaluation - reproduce well-known results

We compared 3 algorithms

 \Diamond JML $~~\Diamond$ LDJML $~~\Diamond$ Shortest Available Path (SAP) with intent trees

- · JML is the slowest and with the fewest costs
- · SAP is the fastest and with the most costs and blocked traffic
- · LDJML is, as tuned, in the middle without blocked traffic

Background

Intent trees are a a multi-step intent compilation approach Hierarchical data structure with gradually decreasing abstraction level

Contribution

Identified major intent tree weakness to perform grooming Refined architecture by introducing intent DAGs

- support for intent grooming
- modular architecture as any RMSA algorithm can be adapted

Demonstrated the adaptation of an advanced RMSA heuristic to the intent DAG concept Proof-of-concept evaluation by comparing 3 intent compilation algorithms

Future work

New, exciting benefits are still to be gained for multi-domain operation Future work will focus on the design and operation of multi-domain intent DAGs

MD IBN and intent delegation

Extend from single domain to multi domain

- expand intent tree to span several domains
- remote intent delegates an intent replica to the neighbor domain
- · state update properties still hold due to parent-child relationship

→ Confidentiality

Parent can only access the child state and no internal information of any descendant

→ Accountability

In case of a network fault, the state of the corresponding intent is updated Clear whom to hold responsible

© 2023 Universität Stuttgart • IKR

intent #211

intent #222

Multiple seeded simulations

40 simulations.

The demand matrix is generated using different seeds and a truncated normal distribution for every node pair

The aggregated traffic is ca. 62 Tbps

Tables used

Line cards L		
n_l (ports)	r_l port rate (Gbps)	c_l (cost units)
10	100	26.72
2	400	29.36
1	1000	31.99

TABLE I PROPERTIES OF THE LINE CARDS.

TABLE II PROPERTIES OF THE OPTICAL TRANSMISSION MODULES

(a) Pluggable modules

CPT			
r_t (Gbps)	d_t (km)	$b_t (\times 12.5 \mathrm{GHz})$	
400	480	6	
300	1600	6	
200	2880	6	
100	5840	4	

(b) Transponder modules (conservative)

Values based on [1,2,3,4] and GNPy

(1) P. Papanikolaou, K. Christodoulopoulos, and E. Varvarigos, "Multilayer flex-grid network planning," in 2015 International Conference on Optical Network Design and Modeling (ONDM), 2015, pp. 151–156

(2) A. Eira and J. Pedro, "On the Comparative Efficiency of Next- Generation Coherent Interfaces for Survivable Network Design," in 17th International Conference on the Design of Reliable Communication Networks (DRCN), 2021.

(3) "White paper: OpenZR+ 400G Digital Coherent Optics for Multi-Haul," OpenZR+ Multi-Source Agreement, Tech. Rep., September 2020, Accessed on 28.03.2022. [Online]. Available: https://openzrplus.org/ site/assets/files/1074/openzrplus whitepaper - sept 29 2020 final.pdf

(4) F. Rambach, B. Konrad, L. Dembeck, U. Gebhard, M. Gunkel, M. Quagliotti, L. Serra, and V. Lopez, "A multilayer cost model for metro/core networks," Journal of Optical Communications and Networking,2013

CET

CET conservative			
r_t (Gbps)	d_t (km)	$b_t \ (\times \ 12.5 \text{GHz})$	
800	160	8	
700	200	8	
600	240	6	
500	480	6	
400	880	6	
300	2080	6	
200	6120	6	
100	9260	4	

(c) Transponder modules (advanced)

CET advanced				
r_t (Gbps)	d_t (km)	$b_t \ (\times \ 12.5 \text{GHz})$		
800	400	10		
700	700	10		
600	1200	8		
500	2800	8		
400	4400	8		
300	5080	8		

Costs used		
Device	cost units	
CET	20	
СРТ	8	
linecard	see line cards table	
line card chassis	4.7	
fiber end-to-end	100	
fiber per km	0.5/km	

General costs based on [1]

CDC ROADM costs is a function of node-degree and add/drop signals [1]

Transponder/Pluggables cost is 40% based on [2]

(1) F. Rambach, B. Konrad, L. Dembeck, U. Gebhard, M. Gunkel, M. Quagliotti, L. Serra, and V. Lopez, "A multilayer cost model for metro/core networks," Journal of Optical Communications and Networking, 2013

(2) P. Wright, R. Davey, and A. Lord, "Cost Model Comparison of ZR/ZR+ Modules Against Traditional WDM Transponders for 400G IP/WDM Core Networks," in 2020 European Conference on Optical Communications (ECOC), 2020.